Answer:
B) The same as the momentum change of the heavier fragment.
Explanation:
Since the initial momentum of the system is zero, we have
0 = p + p' where p = momentum of lighter fragment = mv where m = mass of lighter fragment, v = velocity of lighter fragment, and p' = momentum of heavier fragment = m'v' where m = mass of heavier fragment = 25m and v = velocity of heavier fragment.
0 = p + p'
p = -p'
Since the initial momentum of each fragment is zero, the momentum change of lighter fragment Δp = final momentum - initial momentum = p - 0 = p
The momentum change of heavier fragment Δp' = final momentum - initial momentum = p' - 0 = p' - 0 = p'
Since p = -p' and Δp = p and Δp' = -p = p ⇒ Δp = Δp'
<u>So, the magnitude of the momentum change of the lighter fragment is the same as that of the heavier fragment. </u>
So, option B is the answer
Answer:
Miller Indices are [2, 4, 3]
Solution:
As per the question:
Lattice Constant, C = 
Intercepts along the three axes:



Now,
Miller Indices gives the vector representation of the atomic plane orientation in the lattice and are found by taking the reciprocal of the intercepts.
Now, for the Miller Indices along the three axes:
a = 
b = 
c = 
To find the Miller indices, we divide a, b and c by reciprocal of lattice constant 'C' respectively:
a' = 
b' = 
c' = 
Answer:
the moment of inertia with the arms extended is Io and when the arms are lowered the moment
I₀/I > 1 ⇒ w > w₀
Explanation:
The angular momentum is conserved if the external torques in the system are zero, this is achieved because the friction with the ice is very small,
L₀ = L_f
I₀ w₀ = I w
w =
w₀
where we see that the angular velocity changes according to the relation of the angular moments, if we approximate the body as a cylinder with two point charges, weight of the arms
I₀ = I_cylinder + 2 m r²
where r is the distance from the center of mass of the arms to the axis of rotation, the moment of inertia of the cylinder does not change, therefore changing the distance of the arms changes the moment of inertia.
If we say that the moment of inertia with the arms extended is Io and when the arms are lowered the moment will be
I <I₀
I₀/I > 1 ⇒ w > w₀
therefore the angular velocity (rotations) must increase
in this way the skater can adjust his spin speed to the musician.
Answer:
0.544 eV
Explanation:
To ionize the hydrogen atom 
So the required energy is
as
So 
We have to calculate the energy required to ionize hydrogen atom when it is in n=5
So the energy should be less than 