F=ma so a=F/m
ax=180/270=0.67m/s^2
ay=390/270=1.44m/s^2
Magnitude = sqrt((0.67^2)+(1.44^2))=1.59m/s^2
Direction- Tan(x)=0.67/1.44=0.47 Tan^-1(x)=25 degrees
Answer:
the velocity of the mass is 8.44 m/s
Explanation:
Given;
mass of the object, m = 2 kg
spring constant, k = 180 N/m
extension of the spring, x = 0.89 m
The maximum velocity of the mass is calculated as follows;
By the principle of conservation of energy;
Elastic potential energy = kinetic potential energy
¹/₂kx² = ¹/₂mv²
kx² = mv²

Therefore, the velocity of the mass is 8.44 m/s
<em>Hey There!!</em>
<em>I think the answer is:</em>
<em>B). </em><em>Mars has less mass than Earth. </em>
Explanation:
<em>Because, due to the law of gravity, or gravitation, by which all things with mass around the planet Mars are brought towards it. It is weaker than Earth's gravity due to the planet's smaller mass.</em>
<em>P.S </em><em>Tell me if this is wrong....</em>
<em />
<em />
<em>#</em>
<em> </em>
<em />
<em># </em>
<em> </em>
<em />
<em>(^∀^●)ノシ</em>
Answer:
Same direction to produce maximum magnitude and opposite direction to produce minimum magnitude
Explanation:
Let a be the angle between vectors A and B. Generally when we add A to B, we can split A into 2 sub vectors, 1 parallel to B and the other perpendicular to B.
Also let A and B be the magnitude of vector A and B, respectively.
We have the parallel component after addition be
Acos(a) + B
And the perpendicular component after addition be
Asin(a)
The magnitude of the resulting vector would be




As A and B are fixed, the equation above is maximum when cos(a) = 1, meaning a = 0 degree and vector A and B are in the same direction, and minimum with cos(a) = -1, meaning a = 180 degree and vector A and B are in opposite direction.
To find the answer, plot down the factors for every number.
12: 1, 2 ,3 ,4, 6, 12
18: 1, 2, 3, 6, 9, 18
84: 1, 2, 3, 4, 6, 7, 12
If you noticed, the number that was common to the 3 numbers, were 1, 2, 3, and 6
And 6 is the bigger number
So 6 is your GCF