Answer:
The barrier has to be 34.23 kJ/mol lower when the sucrose is in the active site of the enzyme
Explanation:
From the given information:
The activation barrier for the hydrolysis of sucrose into glucose and fructose is 108 kJ/mol.
In this same concentration for the glucose and fructose; the reaction rate can be calculated by the rate factor which can be illustrated from the Arrhenius equation;
Rate factor in the absence of catalyst:

Rate factor in the presence of catalyst:

Assuming the catalyzed reaction and the uncatalyzed reaction are taking place at the same temperature :
Then;
the ratio of the rate factors can be expressed as:

![\dfrac{k_2}{k_1}={ \dfrac {e^{[ Ea_1 - Ea_2 ] }}{RT} }}](https://tex.z-dn.net/?f=%5Cdfrac%7Bk_2%7D%7Bk_1%7D%3D%7B%20%20%5Cdfrac%20%7Be%5E%7B%5B%20%20Ea_1%20-%20Ea_2%20%5D%20%7D%7D%7BRT%7D%20%7D%7D)
Thus;

Let say the assumed temperature = 25° C
= (25+ 273)K
= 298 K
Then ;



The barrier has to be 34.23 kJ/mol lower when the sucrose is in the active site of the enzyme
Answer:
direct
Explanation:
the more dense it is the more pressure it will exert
Answer:
The volume is 13, 69 L
Explanation:
We use the formula PV=nRT. We convert the temperature in Celsius into Kelvin and the pressure in mmHg into atm.
0°C= 273K---> 56°C= 56 + 273= 329K
760 mmHg----1 atm
719 mmHg----x= (719 mmHgx 1 atm)/760 mmHg= 0,95 atm
PV=nRT ---> V= (nRT)/P
V=( 0,482 molx 0,082 l atm/K mol x 329K)/0,95 atm
<em>V=13,68778526 L</em>