If we have I= 7.5 A:
I think my solution might just help you answer the problem on your own:
You have the formulas correct, watch your signs and BRACKETS.
B = μ0/(2π) (Current) / (Perpendicular distance)
Since μ0=4π E -7 Tm/A, we have:
B1 = (4πE-7 Tm/A)(7.5 A)/[2π (0.030 m)] = 5E-5 T
B2 = (4πE-7 Tm/A)(-7.5 A)/[2π (0.150 m)] = -1E-1 T
So BA = B1 + B2 = ?
(It looks like you just left out the square brackets, hence multiplying Pi and 0.03 and 0.15 instead of dividing them.)
<span>For the point B, the two distances are -0.060 m and +0.060 m. Be careful with the signs. Unlike point A, the two components will have the same sign.</span>
Answer: well since you can fit one million Earths in the sun just multiply.
hope this helps happy thanksgiving ;)
Answer:
Option B: Increase the voltage, while keeping the resistance constant.
Explanation:
Current is directly proportional to voltage, but indirectly proportional to resistance.
initial velocity of the car given as

final velocity is given as

as we know that

now we can convert final speed into m/s

now acceleration is rate of change in velocity



so the acceleration of the car is 3 m/s^2