You need to know the specific heat capacity of air.
Then energy needed = 0.005 x sp.heat.cap x 10
1 gallon = 231 cubic inches
1 cubic foot = 1728 cubic inches
(55 gal) x (231 in³/gal) x (1 ft³/1728 in³)
= (55 x 231 / 1728) ft³
= 7.352 cubic feet (rounded)
Answer:
the correct answer is option C which is 50 units.
Explanation:
given,
two vector of magnitude = 30 units and of 70 units
to calculate resultants vector = \sqrt{a^2+b^2+2 a b cos\theta}
cos θ value varies from -1 to 1
so, resultant vector
=
a = 30 units and b = 70 units
=
= 40 units to 100 units
hence, the correct answer is option C which is 50 units.
Answer:
Thus, the time for the first lamp is 44 minutes.
Explanation:
Power of first lamp, P' = 1000 W
Power of second lamp, P'' = 4400 W
time for second lamp, t'' = 10 minutes
Let the time for first lamp is t'.
As the energy is same, so,
P' x t' = P'' x t''
1000 x t' = 4400 x 10
t' = 44 minutes
As far as I know, elastic distortion (or elastic deformation or temporary distortion) is the case when an object is deformed by virtue of a cause and after the cause is removed, it regains its original shape in a finite amount of time. If it fails to attain its original shape in finite amount of time or takes infinite time it becomes plastic or permanent distortion.
Inelastic materials, simply put, are non elastic materials. They do not show a fixed trend of deformation vs applied force; in fact, they might not deform at all (rigid materials) or the deformation observed is not completely recoverable; on removal of the applied force, the material doesn't return to its original shape, but to a permanent deformed shape. Such materials are called Plastic materials.
A typical material like steel shows all these forms under different conditions of loading (applied force). For extremely low magnitudes of forces, it is practically rigid. Increasing magnitudes of force show a linear elastic response, while further increase show a non-linear, plastic response, till rupture occurs when the material breaks.