Explanation:
Given that,
Mass of disk = 1.2 kg
Radius = 0.07 m
Radius of rod = 0.11 m
Mass of small disk = 0.5 kg
Force = 29 N
Time t = 0.022 s
![\theta=0.023\ m](https://tex.z-dn.net/?f=%5Ctheta%3D0.023%5C%20m)
Distance d= 0.039 m
(I). We need to calculate the speed of the apparatus
Using work energy theorem
![W=\Delta K.E](https://tex.z-dn.net/?f=W%3D%5CDelta%20K.E)
![Fd=\dfrac{1}{2}mv^2](https://tex.z-dn.net/?f=Fd%3D%5Cdfrac%7B1%7D%7B2%7Dmv%5E2)
![v=\sqrt{\dfrac{2Fd}{M+4m}}](https://tex.z-dn.net/?f=v%3D%5Csqrt%7B%5Cdfrac%7B2Fd%7D%7BM%2B4m%7D%7D)
Where, m = total mass
v = velocity
F = force
d = distance
Put the value into the formula
![v=\sqrt{\dfrac{2\times29\times0.039}{1.2+4\times0.5}}](https://tex.z-dn.net/?f=v%3D%5Csqrt%7B%5Cdfrac%7B2%5Ctimes29%5Ctimes0.039%7D%7B1.2%2B4%5Ctimes0.5%7D%7D)
![v=0.840\ m/s](https://tex.z-dn.net/?f=v%3D0.840%5C%20m%2Fs)
(b). We need to calculate the angular speed of the apparatus
Using formula of torque
![\tau=I\alpha](https://tex.z-dn.net/?f=%5Ctau%3DI%5Calpha)
![F\times=(\dfrac{1}{2}MR^2+4mb^2)\alpha](https://tex.z-dn.net/?f=F%5Ctimes%3D%28%5Cdfrac%7B1%7D%7B2%7DMR%5E2%2B4mb%5E2%29%5Calpha)
![29\times0.07=(\dfrac{1}{2}\times1.2\times0.07^2+4\times0.5\times0.11^2)\alpha](https://tex.z-dn.net/?f=29%5Ctimes0.07%3D%28%5Cdfrac%7B1%7D%7B2%7D%5Ctimes1.2%5Ctimes0.07%5E2%2B4%5Ctimes0.5%5Ctimes0.11%5E2%29%5Calpha)
![\alpha=\dfrac{29\times0.07}{0.02714}](https://tex.z-dn.net/?f=%5Calpha%3D%5Cdfrac%7B29%5Ctimes0.07%7D%7B0.02714%7D)
![\alpha=74.79\ rad/s^2](https://tex.z-dn.net/?f=%5Calpha%3D74.79%5C%20rad%2Fs%5E2)
We need to calculate the angular speed of the apparatus
Using equation of angular motion
![\omega=\omega_{0}+\alpha t](https://tex.z-dn.net/?f=%5Comega%3D%5Comega_%7B0%7D%2B%5Calpha%20t)
Put the value into the formula
![\omega=0+74.79\times0.022](https://tex.z-dn.net/?f=%5Comega%3D0%2B74.79%5Ctimes0.022)
![\omega=1.645\ rad/s](https://tex.z-dn.net/?f=%5Comega%3D1.645%5C%20rad%2Fs)
(c). We need to calculate the angular speed of the apparatus
Using equation of angular motion
![\omega_{0}^2=\omega^2+2\alpha t](https://tex.z-dn.net/?f=%5Comega_%7B0%7D%5E2%3D%5Comega%5E2%2B2%5Calpha%20t)
Put the value into the formula
![\omega_{0}^2=1.645^2+2\times74.79\times0.022](https://tex.z-dn.net/?f=%5Comega_%7B0%7D%5E2%3D1.645%5E2%2B2%5Ctimes74.79%5Ctimes0.022)
![\omega=2.44\ rad/s](https://tex.z-dn.net/?f=%5Comega%3D2.44%5C%20rad%2Fs)
Hence, This is required equation.