Answer: the average velocity decreases
Explanation:
From the provided data we have:
Vessel avg. diameter[mm] number
Aorta 25.0 1
Arteries 4.0 159
Arteioles 0.06 1.4*10^7
Capillaries 0.012 2.9*10^9
from the information, let
be the mass flow rate,
is density, n number of vessels, and A is the cross-section area for each vessel
the flow rate is constant so it is equal for all vessels,
The average velocity is related to the flow rate by:

we clear the side where v is in:

area is π*R^2 where R is the average radius of the vessel (diameter/2)
we get:

you can directly see in the last equation that if we go from the aorta to the capillaries, the number of vessels is going to increase ( n will increase and R is going to decrease ) . From the table, R is significantly smaller in magnitude orders than n, therefore, it wont impact the results as much as n. On the other hand, n will change from 1 to 2.9 giga vessels which will dramatically reduce the average blood velocity
Answer:
Yes the water will be safe at the point of cooling water discharge
Explanation:
Power losses in plant= 350- 350×0.35=227.5MW
Rate of heat rejection to stream= 0.75× 227.5= 170.625MW
Rate of heat rejection= rate of flow of water× c × ΔT
170625000= 150000000× 4.186 × (Final temperature- 20)
Final temperature= 20.3 ◦C
The final temperature of stream will be 20.3 ◦C. Thechange is very small so the minnows will be able to handle this temperature.
It could be designed because if we had a small little pizza shop it would save our problems of going through all the trouble just for pizza
Answer:
a) 
b) 
Explanation:
From the question we are told that:
Pressure 
Diameter 
Generally at sea level

Generally the Power series equation for Mach number is mathematically given by



Therefore
Mass flow rate



Generally the equation for Velocity at throat is mathematically given by
)
Where


Therefore

Generally the equation for Mass flow rate is mathematically given by



Answer:
b
Explanation:
only if there signal is turned on