The easiest way I know to explain it is this:
-- Take a flashlight and a ball into a dark room.
-- Turn on the flashlight and point it at the ball.
-- Half of the ball is lighted up by the flashlight, and the other half is dark.
-- There is no way you can turn or twist the ball to make more or less
than 50% of it lighted up and more or less than 50% of it dark.
<em>Everything</em> in the solar system ... as long as it's shaped like a ball ... is
half illuminated by the sun and half dark.
Black-spotted skin coat as camouflage while stalking prey.
Survival = avoiding predators or capturing prey successfully
A) The biggest astronomical object is the Universe, which contains billions of galaxies among which there is the Milky Way.
The Milky Way contains thousands of planetary systems, among which the Solar System.
The Solar System contains many <span>planets <span>(but only one star, the Sun)</span>,</span> among which there is Earth.
Therefore you can label:
A = Universe, B = Milky Way, C = Solar system, D = Earth
b) Given what we said before, you could label D also any other planet in the Solar System, therefore you can choose among Mercury, Venus, Mars, Jupiter, Saturn, Uranus, and Neptune.
348.34 m/s. When Superman reaches the train, his final velocity will be 348.34 m/s.
To solve this problem, we are going to use the kinematics equations for constant aceleration. The key for this problem are the equations
and
where
is distance,
is the initial velocity,
is the final velocity,
is time, and
is aceleration.
Superman's initial velocity is
, and he will have to cover a distance d = 850m in a time t = 4.22s. Since we know
,
and
, we have to find the aceleration
in order to find
.
From the equation
we have to clear
, getting the equation as follows:
.
Substituting the values:

To find
we use the equation
.
Substituting the values:
