Most properly it is 1-10 centimeters
The balanced equation for the neutralisation reaction is as follows
Ca(OH)₂ + H₂SO₄ ---> CaSO₄ + 2H₂O
stoichiometry of Ca(OH)₂ to H₂SO₄ is 1:1
equivalent number of acid reacts with base
number of H₂SO₄ mol reacting - 2 mol
according to molar ratio of 1:1
number of Ca(OH)₂ mol = number of H₂SO₄ moles
therefore number of Ca(OH)₂ moles required - 2 mol
<u>Answer:</u>
<em>Here the given material is taken and mixed with water.</em>
<u>Explanation:</u>
The amount of material and water taken are same. Hence if it is not soluble in water it should make a dense and flowy paste like material and if it is soluble in water it should this and thicker density of water should remain.
If the amount of water that we are taking is more than the material will float in water if it is not soluble and lighter than water or would sink if it is heavier than water.
Answer:

Explanation:
Hello,
In this case, by using the general gas law, that allows us to understand the pressure-volume-temperature relationship as shown below:

Thus, solving for the temperature at the end (considering absolute units of Kelvin), we obtain:

Best regards.
We do a heat balance to solve this:
(m cp ΔT)water = -(m cp ΔT)metal
100.8 (4.18) (27 - 22) = -65 (cp)(27-100)
cp = 100.8 (4.18) (27 - 22) / (-65 (27-100))
cp = 0.44 J/ (°C × g)
The specific heat of the metal is 0.44 J/ (°C × g)