The ground state electron configuration is the arrangement of electrons around the nucleus of an atom with lower energy levels. The electrons occupying the orbitals of varying energy levels naturally falls towards the lowest energy state or ground state.
Answer:
d an acid - base reaction.
Explanation:
Answer:
The correct answer is 10.939 mol ≅ 10.94 mol
Explanation:
According to Avogadro's gases law, the number of moles of an ideal gas (n) at constant pressure and temperature, is directly proportional to the volume (V).
For the initial gas (1), we have:
n₁= 1.59 mol
V₁= 641 mL= 0.641 L
For the final gas (2), we have:
V₂: 4.41 L
The relation between 1 and 2 is given by:
n₁/V₁ = n₂/V₂
We calculate n₂ as follows:
n₂= (n₁/V₁) x V₂ = (1.59 mol/0.641 L) x 4.41 L = 10.939 mol ≅ 10.94 mol
Explanation:
The number of orbitals in the sublevels are given below:
Sublevels Orbitals
s 1
p 3
d 5
f 7
a. ls - 1 orbital
b. 5s - 1 orbital
c. 4d - 5 orbitals
d. 4f - 7 orbitals
e. 7s - 1 orbital
f. 3p - 3 orbitals
g. Entire 5th principal energy level : for s, p , f
1 + 3 + 5 + 7 + 9 = 25
h. 6d - 5
J.j Thomson electrons demo true indivisible sphere n Ernest central nucleas