My answer to the question above is not the best example but I hope it will help you. <span>The Arrhenius model says that acids always contain H+ and that bases always contain OH-. </span>
<span>The Bronsted-Lowry model thinks of acids as being proton donors and proton acceptors, so bases no longer need to contain OH-, and acids donate a proton to water forming H3O+. </span>
<span>Lewis acids are electron pair acceptors, and Lewis bases are electron pair donors. For instance, H+ + OH- => H20. H+ has no electrons, so when it bonds to the Oxygen, it gains an electron pair. OH- "loses" an electron pair.</span>
When air descends it compresses. When the air compresses the molecules in the air knock into each other more often, increasing the tempertature.
Hope this helps
The Lewis structure/diagram for CH2O (aka Formaldehyde) can be written in either of the following ways shown in the picture.
The dots represent electrons in the valence shell of the atom (the outermost shell). The green dots are electrons that belong to the Oxygen atom, the blue belong to the Carbon atom, and the pink belong to the Hydrogen atoms.
Covalent bonds are bonds between atoms where atoms share electrons with each other. Atoms bond because they obey the octet rule ( the rule states that most atoms of main-group elements tend to want 8 electrons in their valence shells).
Oxygen has 6 valence electrons, Carbon has 4, and Hydrogen has 1. H does not follow the octet rule, but C and O do, so the atoms are arranged in this way so that the O and C atoms have a full octet of electrons in their valence.
Hi
Please find attached file with answers.
Hope it help!