Answer:
2C₂H₆ + [7]O₂ → [4]CO₂ + [6]H₂O
Explanation:
Chemical equation:
C₂H₆ + O₂ → CO₂ + H₂O
Balanced chemical equation:
2C₂H₆ + 7O₂ → 4CO₂ + 6H₂O
Step 1:
2C₂H₆ + O₂ → CO₂ + H₂O
Left hand side Right hand side
C = 4 C = 1
H = 12 H = 2
O = 2 O = 3
Step 2:
2C₂H₆ + O₂ → 4CO₂ + H₂O
Left hand side Right hand side
C = 4 C = 4
H = 12 H = 2
O = 2 O = 9
Step 3:
2C₂H₆ + O₂ → 4CO₂ + 6H₂O
Left hand side Right hand side
C = 4 C = 4
H = 12 H = 12
O = 2 O = 14
Step 4:
2C₂H₆ + 7O₂ → 4CO₂ + 6H₂O
Left hand side Right hand side
C = 4 C = 4
H = 12 H = 12
O = 14 O = 14
Answer:
pH = 7.8
Explanation:
The Henderson-Hasselbalch equation may be used to solve the problem:
pH = pKa + log([A⁻] / [HA])
The solution of concentration 0.001 M is a formal concentration, which means that it is the sum of the concentrations of the different forms of the acid. In order to find the concentration of the deprotonated form, the following equation is used:
[HA] + [A⁻] = 0.001 M
[A⁻] = 0.001 M - 0.0002 M = 0.0008 M
The values can then be substituted into the Henderson-Hasselbalch equation:
pH = 7.2 + log(0.0008M/0.0002M) = 7.8
A kilogram of bricks has more inertia. This is because objects with a higher mass, have more inertia.
If matters mix and it doesn’t make a material it’s called physical change. But, if maters are mixed and they do make a material it’s called chemical change.