Answer:
1223.38 mmHg
Explanation:
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 
Also,
Moles = mass (m) / Molar mass (M)
Density (d) = Mass (m) / Volume (V)
So, the ideal gas equation can be written as:

Given that:-
d = 1.80 g/L
Temperature = 32 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (32 + 273.15) K = 305.15 K
Molar mass of nitrogen gas = 28 g/mol
Applying the equation as:
P × 28 g/mol = 1.80 g/L × 62.3637 L.mmHg/K.mol × 305.15 K
⇒P = 1223.38 mmHg
<u>1223.38 mmHg must be the pressure of the nitrogen gas.</u>
Answer:
CH3
|
CH3- C H -CH2-CH2- CH - CH2-CH2-CH3
|
CH
/ \
CH3 CH3
Explanation:
Octan
C-C-C-C-C-C-C-C
Metyl
CH3 -
Isopropyl
CH3
/
- CH
\
CH3
2-metil-5-isopropiloctan
CH3
|
CH3- C H -CH2-CH2- CH - CH2-CH2-CH3
|
CH
/ \
CH3 CH3
Answer:
1.38 M
Explanation:
Need to use the Molarity equation M=n/L
23.5g/ 17.031g/mol NH3 = 1.38 moles
1.38 moles/ 1.0 L = 1.38 M
The enthalpy change for an exothermic reaction is negative because heat is being released, so that takes out two of the responses. Since energy is being released into the surroundings due to the exothermic reaction, the potential energy of the products is lower than that of the reactants. Energy is being put in to make the reaction occur, but then that energy is all being released into the surroundings thus a lower potential energy level for the products
He can conclude that his experiment has very low precision.
<h3>What is Precision ?</h3>
Precision is defined as the degree of refinement with which an operation is performed or a measurement .
Precision is how close the exact answers are together.
As, the answers are increasing in time.
None of the answers are similar to one another.
Hence, He can conclude that his experiment has very low precision.
Learn more about Precision here ;
brainly.com/question/27845433
#SPJ1