2, 8,6 because it has to be in a configuration of 2,8,8
The concentration of hydrogen ions in a solution is a measure of its acidity. So the correct option is (b) false.
When an Arrhenius acid is dissolved in water, hydrogen ions are produced:
H+(aq) + A- = HA + H2O (aq)
Here, H+ is the hydrogen cation, A- is the solvated anion, also known as the conjugate base, and HA is the non-dissociated acid. When an Arrhenius base is dissolved in water, hydroxide ions are produced:
BOH + H2O → B+(aq) + OH-(aq)
Is a material with at least one hydrogen atom that has the ability to split apart in an aqueous solution to produce an anion and an H + ion (a proton), creating an acidic solution. Bases are substances that, when dissolved in water, create hydroxide ions (OH) and a cation, resulting in a basic solution.
Learn more about hydrogen here:
brainly.com/question/16979348
#SPJ4
Its a chemical reaction because both are affected by the reaction and changed. hope this helps (ू• o •ू )
Answer:
empirical formula = C3H7
molecular formula = C6H14
Answer: The correct answer is -297 kJ.
Explanation:
To solve this problem, we want to modify each of the equations given to get the equation at the bottom of the photo. To do this, we realize that we need SO2 on the right side of the equation (as a product). This lets us know that we must reverse the first equation. This gives us:
2SO3 —> O2 + 2SO2 (196 kJ)
Remember that we take the opposite of the enthalpy change (reverse the sign) when we reverse the equation.
Now, both equations have double the coefficients that we would like (for example, there is 2S in the second equation when we need only S). This means we should multiply each equation (and their enthalpy changes) by 1/2. This gives us:
SO3 —>1/2O2 + SO2 (98 kJ)
S + 3/2O2 —> SO3 (-395 kJ)
Now, we add the two equations together. Notice that the SO3 in the reactants in the first equation and the SO3 in the products of the second equation cancel. Also note that O2 is present on both sides of the equation, so we must subtract 3/2 - 1/2, giving us a net 1O2 on the left side of the equation.
S + O2 —> SO2
Now, we must add the enthalpies together to get our final answer.
-395 kJ + 98 kJ = -297 kJ
Hope this helps!