The problem above can be solved using M1V1=M2V2 where M1 is the concentration of the concentrated, V1 is the volume of the concentrated solution, M2 is the concentration of the Dilute Solution, V2 is the Volume of the dilute solution. Hence,
(3.0 M)(V2)=(250 mL)(1.2M)
V2 (3.0)= 300
V2= 100 mL
Therefore, you need 100 mL of 3.0 M HCl to form a 250 mL of 1.2 M HCl.
I can't see the picture, but in general, I believe it is in dropping from the first energy level above the ground state, to the ground state.
Answer:
Specific heat of metal = 0.26 j/g.°C
Explanation:
Given data:
Mass of sample = 80.0 g
Initial temperature = 55.5 °C
Final temperature = 81.75 °C
Amount of heat absorbed = 540 j
Specific heat of metal = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 81.75 °C - 55.5 °C
ΔT = 26.25 °C
540 j = 80 g × c × 26.25 °C
540 j = 2100 g.°C× c
540 j / 2100 g.°C = c
c = 0.26 j/g.°C
Permafrost soil (gelisol) is b) fragile.
Answer:
C. The fruit and the hamburgers were affected by an increase in heat energy.
Explanation:
One claim Harvey can use to support the examples from his experiment is that the hamburgers and fruits were affected by an increase in the heat energy.
- This chemical change is one that is solely driven.
- This action Harvey is carrying out is cooking
- When meals are cooked, the raw substances undergoes chemical change via the action of heat.