Answer:
V₂ = 20 V
Vt = 20 V
V₁ = 20 V
V₃ = 20 V
I₁ = 10 mA
I₃ = 3.33 mA
It = 18.33 mA
Rt = 1090.91 Ω
Pt = 0.367 W
P₁ = 0.2 W
P₂ = 0.1 W
P₃ = 0.067 W
Explanation:
Part of the picture is cut off. I assume there is a voltage source Vt there?
First, use Ohm's law to find V₂.
V = IR
V₂ = (0.005 A) (4000 Ω)
V₂ = 20 V
R₁ and R₃ are in parallel with R₂ and the voltage source Vt. That means V₁ = V₂ = V₃ = Vt.
V₁ = 20 V
V₃ = 20 V
Vt = 20 V
Now we can use Ohm's law again to find I₁ and I₃.
V = IR
I = V/R
I₁ = (20 V) / (2000 Ω)
I₁ = 0.01 A = 10 mA
I₃ = (20 V) / (6000 Ω)
I₃ = 0.00333 A = 3.33 mA
The current It passing through Vt is the sum of the currents in each branch.
It = I₁ + I₂ + I₃
It = 10 mA + 5 mA + 3.33 mA
It = 18.33 mA
The total resistance is the resistance of the parallel resistors:
1/Rt = 1/R₁ + 1/R₂ + 1/R₃
1/Rt = 1/2000 + 1/4000 + 1/6000
Rt = 1090.91 Ω
Finally, the power is simply each voltage times the corresponding current.
P = IV
Pt = (0.01833 A) (20 V)
Pt = 0.367 W
P₁ = (0.010 A) (20 V)
P₁ = 0.2 W
P₂ = (0.005 A) (20 V)
P₂ = 0.1 W
P₃ = (0.00333 A) (20 V)
P₃ = 0.067 W
Jude be done. Die he ehe ehehevehe Ed
Answer: they would be 300 miles from the station.
Explanation:
At the point where both trains meet, they would have covered the same distance.
Let t represent the time spent by the first train in covering this distance.
Distance = speed × time
The first train leaves the station and travels north at 60km/hr.
Distance covered by the first train is
60 × t = 60t
Two hours later, a second train leaves on a parallel track and travels north at 100km/hr. Time spent by the second train in covering this distance is (t - 2) hours
Distance covered by the second train is
100(t - 2) = 100t - 200
Since both trains covered the same distance, then
100t - 200 = 60t
100t - 60t = 200
40t = 200
t = 200/40
t = 5 hours
The distance that they would be from the station is
60 × 5 = 300 miles
Answer:
7th A good time for you arshpreet May God bless you live a long life of shapes in which class do read it and I am asking you are nagre andg my replying sooner than later this month to you arshpreet May God bless you live a long life of shapes in which class do read it and I am asking you are nagre andg my replying sooner than later this month to you arshpreet May God bless you live a long life of shapes in which class do read it and I am asking you are nagre andg my replying sooner than later this month to you arshpreet May God bless you live a long life of shapes in which class do read it and I am asking you are nagre andg my replying sooner than later this month to you arshpreet May God bless you live a long life of shapes in which class do read it and I am asking you are nagre andg my