Answer:
r=15.53 nm

Explanation:
Lets take electron is in between iron and uranium
Charge on electron
Charge on iron
Charge on uranium
We know that force between two charge

For equilibrium force between electron and iron should be force between electron and uranium
Lets take distance between electron and uranium is r so distance between electron and iron will be 37.5-r nm
Now by balancing the force

So r=15.53 nm
So force

Answer:
, pfx = pix + Jx.
Explanation:
The momentum principle tells us that impulse transfers momentum to an object.
If an object has 2 kgm/s of momentum, a 1 kgm/s impulse delivered to the object
increases its momentum to 3 kgm/s. That is, pfx = pix + Jx.
Just as we did with energy, we can represent this “momentum accounting” with a
momentum bar chart. For example, the bar chart of FIGURE 11.6 represents the ball
colliding with a wall in Figure 11.4. Momentum bar charts are a tool for visualizing
an interaction
Answer:
a. P = nRTV
Explanation:
The question is incomplete. Here is the complete question.
"All of the following equations are statements of the ideal gas law except a. P = nRTV b. PV/T = nR c. P/n = RT/v d. R = PV/nT"
Ideal gas equation is an equation that describes the nature of an ideal gas. The molecule of an ideal gas moves at a particular velocity depending on the temperature. This gases collides with one another elastically. The collision that an ideal gas experience is a perfectly elastic collision.
The ideal gas equation is expressed as shown:
PV = nRT where:
P is the pressure of the gas
V is the volume
n is the number of moles
R is the ideal gas constant
T is the temperature.
Based on the formula given for an ideal gas, it can be inferred that the equation. P = nRTV is not a statement of an ideal gas equation.
The remaining option will results to an ideal gas equation if they are cross multipled.