Answer:
The orbital speed of this second satellite is 5195.16 m/s.
Explanation:
Given that,
Orbital radius of first satellite 
Orbital radius of second satellite 
Mass of first satellite 
Mass of second satellite 
Orbital speed of first satellite = 4800 m/s
We need to calculate the orbital speed of this second satellite
Using formula of orbital speed

From this relation,

Now, 

Put the value into the formula


Hence, The orbital speed of this second satellite is 5195.16 m/s.
Answer:
1047 miles
Explanation:
The radius of the Earth is
(miles)
So its circumference, which is the total length of the equator, is given by

Now we know that the Earth rotates once every 24 hours. So the distance through which the equator moves in one hour is equal to its total length divided by the number of hours, 24:

Newton's 2nd law of motion:
Force = (mass) x (acceleration)
= (0.314 kg) x (164 m/s²)
= 51.5 newtons
(about 11.6 pounds).
Notice that the ball is only accelerating while it's in contact with the racket. The instant the ball loses contact with the racket, it stops accelerating, and sails off in a straight line at whatever speed it had when it left the strings.
~ I hope this helped, and I would appreciate Brainliest. ♡ ~ ( I request this to all the lengthy answers I give ! )
The specific heat of the metal, assuming no heat is exchanged with the surroundings is 2140 J/(kg•K).
<h3>
Specific heat capacity of the metal</h3>
The specific heat capacity of the metal is determined from the principle of conservation of energy.
energy lost by the metal = energy gained by aluminum + energy gained by water
Q = mcΔθ
where;
- m is mass (kg)
- c is specific heat capacity
- Δθ is change in temperature
0.425c(100 - 40) = 0.1(900)(40 - 15) + 0.5(4186)(40 - 15)
25.5c = 2250 + 52,325
c = 54,575/25.5
c = 2140 J/(kg•K)
Learn more about specific heat capacity here: brainly.com/question/21406849
#SPJ1
Is is the second one. 336 k. 273.15K= 0C.