1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
krek1111 [17]
2 years ago
5

A machine does 1200 J of work in 1 min. What is the power developed

Physics
1 answer:
densk [106]2 years ago
8 0

Answer:

20 watts

Explanation:

Big brain mode activated:

Power=1200J/60sec

Power=20 watts

You might be interested in
How fast would you be going (in kmh) if you had a ship that accelerated at a constant 1g for 24 hours?
Nady [450]

Answer:

Explanation:

1 g is 9.8 m/s^2 the problem wants the results in km/h so we'll fix that really quick.

9.8 m/s^2 (1 km/1000m)(60 sec/1 min)^2(60 min/1 hour)^2 = 127008 km/hour^2

Now, I'm assuming the ship is starting from rest, and hopefully you know your physics equations.  We are going to use vf = vi + at.  Everything is just given, or we can assume, so I'll just solve.

vf = vi + at

vf = 0 + 127008 km/hour^2 * 24 hours

vf = 3,048,192 km/hour

If there's anything that doesn't make sense let me know.  

5 0
3 years ago
A second baseman tosses the ball to the first baseman, who catches it at the same level from which it was thrown. The throw is m
Anit [1.1K]
 <span>(a) 

Taking the angle of the pitch, 37.5°, and the particle's initial velocity, 18.0 ms^-1, we get: 

18.0*cos37.5 = v_x = 14.28 ms^-1, the projectile's horizontal component. 

(b) 
To much the same end do we derive the vertical component: 

18.0*sin37.5 = v_y = 10.96 ms^-1 

Which we then divide by acceleration, a_y, to derive the time till maximal displacement, 

10.96/9.8 = 1.12 s 

Finally, doubling this value should yield the particle's total time with r_y > 0 

<span>2.24 s

I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span></span>
6 0
2 years ago
A crate is acted upon by a net force of 100N. An acceleration of 5.0 m/s^2 results. What is the rate of the crate?
andreev551 [17]
Is there any other information given? I don't think you can solve this without a time
6 0
3 years ago
A 60kg bicyclist (including the bicycle) is pedaling to the
Fittoniya [83]

a) 4 forces

b) 186 N

c) 246 N

Explanation:

a)

Let's count the forces acting on the bicylist:

1) Weight (W=mg): this is the gravitational force exerted on the bicyclist by the Earth, which pulls the bicyclist towards the Earth's centre; so, this force acts downward (m = mass of the bicyclist, g = acceleration due to gravity)

2) Normal reaction (N): this is the reaction force exerted by the road on the bicyclist. This force acts vertically upward, and it balances the weight, so its magnitude is equal to the weight of the bicyclist, and its direction is opposite

3) Applied force (F_A): this is the force exerted by the bicylicist to push the bike forward. Its direction is forward

4) Air drag (R): this is the force exerted by the air on the bicyclist and resisting the motion of the bike; its direction is opposite to the motion of the bike, so it is in the backward direction

So, we have 4 forces in total.

b)

Here we can find the net force on the bicyclist by using Newton's second law of motion, which states that the net force acting on a body is equal to the product between the mass of the body and its acceleration:

F_{net}=ma

where

F_{net} is the net force

m is the mass of the body

a is its acceleration

In this problem we have:

m = 60 kg is the mass of the bicyclist

a=3.1 m/s^2 is its acceleration

Substituting, we find the net force on the bicyclist:

F_{net}=(60)(3.1)=186 N

c)

We can write the net force acting on the bicyclist in the horizontal direction as the resultant of the two forces acting along this direction, so:

F_{net}=F_a-R

where:

F_{net} is the net force

F_a is the applied force (forward)

R is the air drag (backward)

In this problem we have:

F_{net}=186 N is the net force (found in part b)

R=60 N is the magnitude of the air drag

Solving for F_a, we find the force produced by the bicyclist while pedaling:

F_a=F_{net}+R=186+60=246 N

3 0
3 years ago
What changes would result in a decrease in the gravitational force between two objects? Check all that apply.
REY [17]

<em>I'm sorry, it says check all that apply, however there are no choices given. You should edit, and add the multiple choice answers.</em>

My Answer:

Well if the masses of two objects were both decreased, it would result in a decrease in the gravitational force. So I guess the two objects masses would need to be decreased.

4 0
3 years ago
Other questions:
  • A wooden ring whose mean diameter is 15.0 cm is wound with a closely spaced toroidal winding of 555 turns. Compute the magnitude
    11·1 answer
  • What does resonance result in? Quieter sounds, frequency, amplitude
    9·2 answers
  • On Monday when you ask your friend if you should dump The person your day and she said yes now on Wednesday she says no since yo
    6·1 answer
  • A 1.5m wire carries a 6 A current when a potential difference of 70 V is applied. What is the resistance of the wire?
    9·1 answer
  • Newton's Law of Cooling states that the rate of cooling of an object is proportional to the temperature difference between the o
    9·1 answer
  • "In this lesson, you learned about renewable energy resources and nonrenewable energy resources. Think about the resources discu
    7·1 answer
  • HELP PLEASE THANKS!! Explain why Gravitational forces are always attractive.
    7·1 answer
  • A wave with a frequency of 1200 Hz propagates along a wire that is under a tension of 800 N. Its wavelength is 39.1 cm. What wil
    14·1 answer
  • •A radioactive material A (decay constant λA) decays into a material B (decay constant λB) and then into material C (decay const
    10·1 answer
  • Please help! this is timed!
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!