Answer:
15 m/s or 1500 cm/s
Explanation:
Given that
Speed of the shoulder, v(h) = 75 cm/s = 0.75 m/s
Distance moved during the hook, d(h) = 5 cm = 0.05 m
Distance moved by the fist, d(f) = 100 cm = 1 m
Average speed of the fist during the hook, v(f) = ? cm/s = m/s
This can be solved by a very simple relation.
d(f) / d(h) = v(f) / v(h)
v(f) = [d(f) * v(h)] / d(h)
v(f) = (1 * 0.75) / 0.05
v(f) = 0.75 / 0.05
v(f) = 15 m/s
Therefore, the average speed of the fist during the hook is 15 m/s or 1500 cm/s
Imagine you are in a swimming pool 30m deep. Assuming you know that water is denser than air, you would know that the 30m of water above you will carry more weight, and press down on your body. Say you were in a swimming pool 60m deep, you would be sandwiched between 30m of water pressing down on you, and the upthrust created by the 30m of water below you.
In a building 30m up, the pressure will be regulated, as you are in a building. The floor will be strong enough to support the weight of the body, and the body will not recoil into itself.
A. The proeutectoid phase is Fe₃c because 0.95 wt/c is greater than the eutectoid composition which is 0.76 wt/c
b. We determine how much total territe and cementite form, we apply the lever rule expressions yields.
Wx = (fe₃c-co/cfe₃ c-cx = 6.70- 0.95/6.70- 0.022 = 0.86
The total cementite
Wfe₃C = 10-Cx/ Cfe₃c -Cx = 0.95 - 0.022/6.70 - 0.022 = 0.14
The total cementite which is formed is
(0.14) × (3.5kg) = 0.49kg
c. We calculate the pearule and the procutectoid phase which cementite form the equation
Ci = 0.95 wt/c
Wp = 6.70 -ci/6.70 - 0.76 = 6.70 -0.95/6.70 - 0.76 = 0.97
0.97 corresponds to mass.
W fe₃ C¹ = Ci - 0.76/5.94 = 0.03
∴ It is equivalent to
(0.03) × (3.5) = 0.11kg of total of 3.5kg mass.
Answer:
acceleration of the rocket is given as
Explanation:
As we know that rocket starts from rest and then reach to final speed of 447 m/s after t = 1 min
so we have
so we have