Answer:
<u>-8</u>
Explanation:
if he starts at ten and takes 10 steps left he'll be at -10... then if he takes 2 steps to the right , he's at -8 on the number-line
Answer:
<h2>602.08 N</h2>
Explanation:
The force supplied by the train can be found by using the formula

w is the workdone
d is the distance
From the question we have

We have the final answer as
<h3>602.08 N</h3>
Hope this helps you
Answer:
388.97 nm
Explanation:
The computation of the wavelength of this light in benzene is shown below:
As we know that
n (water) = 1.333
n (benzene) = 1.501

And, the wavelength of water is 438 nm
![\lambda (benzene) = \lambda (water) [\frac{n(water)}{n(benzene}]](https://tex.z-dn.net/?f=%5Clambda%20%28benzene%29%20%3D%20%5Clambda%20%28water%29%20%5B%5Cfrac%7Bn%28water%29%7D%7Bn%28benzene%7D%5D)
Now placing these values to the above formula
So,

= 388.97 nm
We simply applied the above formula so that we can easily determine the wavelength of this light in benzene could come
The PE for this question will be 588,000 because we take the mass (2,000 kg), multiply it by 9.8 which is Gravitational Acceleration and then multiply that by the height (30 meters)
Answer:
a) 69.3 m/s
b) 18.84 s
Explanation:
Let the initial velocity = u
The vertical and horizontal components of the velocity is given by uᵧ and uₓ respectively
uᵧ = u sin 40° = 0.6428 u
uₓ = u cos 40° = 0.766 u
We're given that the horizontal distance travelled by the projectile rock (Range) = 1 km = 1000 m
The range of a projectile motion is given as
R = uₓt
where t = total time of flight
1000 = 0.766 ut
ut = 1305.5
The vertical distance travelled by the projectile rocks,
y = uᵧ t - (1/2)gt²
y = - 900 m (900 m below the crater's level)
-900 = 0.6428 ut - 4.9t²
Recall, ut = 1305.5
-900 = 0.6428(1305.5) - 4.9 t²
4.9t² = 839.1754 + 900
4.9t² = 1739.1754
t = 18.84 s
Recall again, ut = 1305.5
u = 1305.5/18.84 = 69.3 m/s