NH₃:
N = 8*10²²
NA = 6.02*10²³
n = N/NA = 8*10²²/6.02*10²³ ≈ 1.33*10⁻¹=0.133mol
O₂:
N=7*10²²
NA = 6.02*10²³
n = N/NA = 7*10²²/6.02*10²³ = 1.16*10⁻¹=0.116mol
4NH₃ <span>+ 3O</span>₂ ⇒<span> 2N</span>₂<span> + 6H</span>₂<span>O
</span>4mol : 3mol : 2mol
0.133mol : 0.116mol : 0,0665mol
limiting reactant
N₂:
n = 0.0665mol
M = 28g/mol
m = n*M = 0.0665mol*28g/mol = <u>1,862g</u>
Answer:
The mass of a system does not change during a chemical reaction
Explanation:
Correct Answers
<u>Given:</u>
Mass of pure iron (Fe) = 3.4 g
<u>To determine:</u>
Mass of HBr needed to dissolve the above iron
<u>Explanation:</u>
Reaction between HBr and Fe is
Fe + 2HBr → FeBr₂ + H₂
Based on the reaction stoichiometry-
1 mole of Fe reacts with 2 moles of HBr
# moles of Fe = mass of Fe/atomic mass of Fe = 3.4/56 g.mol⁻¹ = 0.0607 moles
Therefore # moles of HBr = 2*0.0607 = 0.1214 moles
Molar mass of HBr = 81 g/mole
Mass of HBr = 0.1214 moles * 81 g/mole = 9.83 g
Ans: Mass of HBR required is 9.83 g
A. Reactants, products
In a chemical reaction, reactants interact to form products
In a neutral ionic compound, you can determine its sub-scripts by simply flipping the ionic charges and dropping the signs: so AlS would be Al2S3