Answer: False
Explanation: They can see it by karst topography!
<h3>Question:</h3>
How to find g (acceleration due to gravity)
<h3>Solution:</h3>
We know,
Acceleration due to gravity (g)

where, G = Gravitational constant

M = Mass of the earth

R = Radius of the earth

Putting these values of G, M and R in the above formula, we get

So, the value of acceleration due to gravity is

Hope it helps.
Do comment if you have any query.
Answer:
a.
b. 
Explanation:
<u>Given:</u>
- Velocity of the particle, v(t) = 3 cos(mt) = 3 cos (0.5t) .
<h2>
(a):</h2>
The acceleration of the particle at a time is defined as the rate of change of velocity of the particle at that time.

At time t = 3 seconds,

<u>Note</u>:<em> The arguments of the sine is calculated in unit of radian and not in degree.</em>
<h2>
(b):</h2>
The velocity of the particle at some is defined as the rate of change of the position of the particle.

For the time interval of 2 seconds,

The term of the left is the displacement of the particle in time interval of 2 seconds, therefore,

It is the displacement of the particle in 2 seconds.
F = m • a
What we know:
- Gravity: 9.8 m/s
- Force: 490 N
Equation derived:
m = F/a
m = 490/9.8
= 50 kg
Answer:
Part a)

Part b)

Explanation:
Part a)
As we know that electric field intensity due to some given charge distribution is given as

now electric flux through a spherical surface of radius r is given as


now by Guass law we know that


now volume charge density is given as


Part b)
Total charge inside the radius R is given as
