i guess its e) Mn (VII)
if it was wrong pls let me knw
Intensity has no affect on whether or not the photoelectric effect occurs. The determining property is frequency and since frequency and wavelength are inversely proportional, wavelength matters as well. If a frequency of light can't cause the photoelectric effect to happen, no matter what the intensity is, the light can't make it happen.
I hope this helps. Let me know in the comments if anything is unclear.
1. big bang-the most accepted theory on the origin of the universe <span>
2. steady state-</span>all is the same and will always stay the same <span>
3. oscillating universe-</span>agrees with the big bang theory, but insists the universe expanded much quicker <span>
4. inflation-</span>it's like an inflating and deflating balloon that never stops
Answer:
cause they like it that way
Explanation:
btw cant tell if this is legit or not
Henlo!
Bohr's model was unable to calculate or it required precise information about position of an electron and its velocity. It is very difficult to calculate velocity and position of an electron at the same time because electron i too small to see and may only be observed if peturbed, for example we could hit the electron with another particle such as photon or an electron, or we could apply electric or magnetic field to the electron. This will inevitably change the position of the elctron or its velocity and direction. Heisenberg aid that more precisely we can define the position of an electron, the less certainity we are able to define its velocity and vice versa.
In short, first option is correct one