Beat frequency, fb = |f2-f1|
That is, beat frequency is the absolute difference between two frequencies. Is is as a results of destructive and constructive inferences.
Therefore, in this case:
fb = 203 - 199 = 4 Hz
Answer: One quarter of the force
Explanation:
According to Newton's law of Gravitation, the force
exerted between two bodies of masses
and
and separated by a distance
is equal to the product of their masses and inversely proportional to the square of the distance:
(1)
Where
is the gravitational constant
This means that the gravity force decreases when the distance between these two bodies increases.
In this context, if the distance between the capsule and the Earth increases twice, the new distance will be
.
Substituting this distance in (1):
(2)
<u>Finally:</u>
>>>This means the force toward Earth becomes one quarter "weaker"
The letter i is used to signify that a number is an imaginary number. It stand for the square root of negative one.
Answer:
![\vec{E} = \frac{\lambda}{2\pi\epsilon_0}[\frac{1}{y}(\^y) - \frac{1}{x}(\^x)]](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%7D%5B%5Cfrac%7B1%7D%7By%7D%28%5C%5Ey%29%20-%20%5Cfrac%7B1%7D%7Bx%7D%28%5C%5Ex%29%5D)
Explanation:
The electric field created by an infinitely long wire can be found by Gauss' Law.

For the electric field at point (x,y), the superposition of electric fields created by both lines should be calculated. The distance 'r' for the first wire is equal to 'y', and equal to 'x' for the second wire.
![\vec{E} = \vec{E}_1 + \vec{E}_2 = \frac{\lambda}{2\pi\epsilon_0 y}(\^y) + \frac{-\lambda}{2\pi\epsilon_0 x}(\^x)\\\vec{E} = \frac{\lambda}{2\pi\epsilon_0 y}(\^y) - \frac{\lambda}{2\pi\epsilon_0 x}(\^x)\\\vec{E} = \frac{\lambda}{2\pi\epsilon_0}[\frac{1}{y}(\^y) - \frac{1}{x}(\^x)]](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%20%3D%20%5Cvec%7BE%7D_1%20%2B%20%5Cvec%7BE%7D_2%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%20y%7D%28%5C%5Ey%29%20%2B%20%5Cfrac%7B-%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%20x%7D%28%5C%5Ex%29%5C%5C%5Cvec%7BE%7D%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%20y%7D%28%5C%5Ey%29%20-%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%20x%7D%28%5C%5Ex%29%5C%5C%5Cvec%7BE%7D%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%7D%5B%5Cfrac%7B1%7D%7By%7D%28%5C%5Ey%29%20-%20%5Cfrac%7B1%7D%7Bx%7D%28%5C%5Ex%29%5D)
Answer:
The current is
The direction is anti-clockwise
Explanation:
The diagram for this question is shown on the first uploaded image
From the question we are told that
the length of the conducting rod is 
The resistance is 
The magnetic field is 
The speed of the rod is 
The emf induced is
substituting values we have


From ohm law the induced current would be

substituting values we have

The direction anticlockwise this because according to lenze law the current due to change in magnetic field will act in the opposite direction of the force causing the magnetic field to change