Every chemical equation adheres to the law of conservation of mass, which states that matter cannot be created or destroyed. ... When an equal number of atoms of an element is present on both sides of a chemical equation, the equation is balanced.
Answer:
Saturated solution
We should raise the temperature to increase the amount of glucose in the solution without adding more glucose.
Explanation:
Step 1: Calculate the mass of water
The density of water at 30°C is 0.996 g/mL. We use this data to calculate the mass corresponding to 400 mL.

Step 2: Calculate the mass of glucose per 100 g of water
550 g of glucose were added to 398 g of water. Let's calculate the mass of glucose per 100 g of water.

Step 3: Classify the solution
The solubility represents the maximum amount of solute that can be dissolved per 100 g of water. Since the solubility of glucose is 125 g Glucose/100 g of water and we attempt to dissolve 138 g of Glucose/100 g of water, some of the Glucose will not be dissolved. The solution will have the maximum amount of solute possible so it would be saturated. We could increase the amount of glucose in the solution by raising the temperature to increase the solubility of glucose in water.
Answer:
Isotopes are atoms of the same element that have different numbers of neutrons but the same number of protons and electrons. The difference in the number of neutrons between the various isotopes of an element means that the various isotopes have different masses.
Answer:
SeF4 is a polar molecule
Explanation:
SeF4 is a polar molecule because a polar molecule is any molecule that have lone pairs of electrons in the central atom or have atoms that are electronegative and the electrons between that are covalently bonded are not evenly distributed.
The electronegative atoms of flourine in SeF4 are not evenly distributed and kind pairs of electrons are on the central atom.
<span>The particles are far apart from each other.</span>