The balanced chemical reaction is written as:
<span>3NO2 + H2O = 2HNO3 + NO
Assuming that the gases in this reaction are ideal gas, then we can use the conversion from L to moles which is 1 mol of ideal gas is equal to 22.4 L. We calculate as follows:
538 L NO2 ( 1 mol / 22.4L ) ( 1 mol NO / 3 mol NO2 ) ( 22.4 L / 1 mol ) = 179.33 L NO is produced</span>
Answer:
A) Glass
Explanation:
Glass is a conductor, so it allows heat to go through it (Ex. Touching a pie pan that came right out of the oven)
Rubber is an insulator, so heat has a hard time passing through (Ex. Using a rubber grip on a cast iron pan.
Cloth is also an insulator, so heat has a hard time passing through (Ex. Using a pot holder to prevent the counter from getting scarred)
Wood is also an insulator, so heat has a hard time passing through (Ex. Bedding for a rabbit hutch)
Hope this helps!!
Answer:
121 g/mol
Explanation:
To find the molar mass, you first need to calculate the number of moles. For this, you need to use the Ideal Gas Law. The equation looks like this:
PV = nRT
In this equation,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = moles
-----> R = constant (0.0821 L*atm/mol*K)
-----> T = temperature (K)
Because density is comparing the mass per 1 liter, I am assuming that the system has a volume of 1 L. Before you can plug the given values into the equation, you first need to convert Celsius to Kelvin.
P = 1.00 atm R = 0.0821 L*atm/mol*K
V = 1.00 L T = 25.0. °C + 273.15 = 298.15 K
n = ? moles
PV = nRT
(1.00 atm)(1.00L) = n(0.0821 L*atm/mol*K)(298.15 K)
1.00 = n(0.0821 L*atm/mol*K)(298.15 K)
1.00 = (24.478115)n
0.0409 = n
Now, we need to find the molar mass using the number of moles per liter (calculated) and the density.
0.0409 moles ? grams 4.95 grams
---------------------- x ------------------ = ------------------
1 L 1 mole 1 L
? g/mol = 121 g/mol
**note: I am not 100% confident on this answer
Reasons why percent yield is more than 100
Typically, percent yields are understandably less than 100% because of the reasons indicated earlier. However, percent yields greater than 100% are possible if the measured product of the reaction contains impurities that cause its mass to be greater than it actually would be if the product was pure.
figure it out