1askjjjohikjgnvrfntttkmvvvvvvvfdrtgfgfgfgffdxxsd
Answer:
vpg = 0.064 N
Explanation:
Upthrust = Volume of fluid displaced
upthrust liquid on the cube g=10ms−2
vpg =0.2 x 0.2 x 0.2 x0.8 x 10= 0.064N
vpg = 0.064 N
hope it helps.
Answer:
Approximately
.
Assumption: the ball dropped with no initial velocity, and that the air resistance on this ball is negligible.
Explanation:
Assume the air resistance on the ball is negligible. Because of gravity, the ball should accelerate downwards at a constant
near the surface of the earth.
For an object that is accelerating constantly,
,
where
is the initial velocity of the object,
is the final velocity of the object.
is its acceleration, and
is its displacement.
In this case,
is the same as the change in the ball's height:
. By assumption, this ball was dropped with no initial velocity. As a result,
. Since the ball is accelerating due to gravity,
.
.
In this case,
would be the velocity of the ball just before it hits the ground. Solve for
.
.
How do you find instantaneous velocity
Select a point on a distance-time curve graph. Draw a tangent to the curve at that point. Tangent -> hypotenuse of right angled triangle. Opp/adjacent in graph units is vel at that point -> in distance and/or time