Part a.
u = 0, the initial velocity
v = 60 mi/h, the final velocity
a = 2.35 m/s², the acceleration.
Note that
1 m = 1609.34 m.
Therefore
v = (60 mi/h)*(1609.34 m/mi)*(1/3600 h/s) = 26.822 m/s
Use the formula
v = u + at
(26.822 m/s) = (2.35 m/s²)*(t s)
t = 26.822/2.35 = 11.4 s
Answer: 11.4 s
Part b.
We already determined that v = 60 mi/h = 26.822 m/s.
t = 0.6 s
Therefore
(26.822 m/s) = (a m/s²)*(0.6 s)
a = 26.822/0.6 = 44.7 m/s²
Answer: 44.7 m/s²
For physics, I would recommend to just keep doing practice problems and reviewing notes. Repetition of the same concepts will help drill it into your brain. Hope that helps!
Answer:
North pole
Explanation:
According to the law of magnetism:
<em>Unlike poles attract while like poles repel</em>
Since the south pole of the steel is brought near the nail, and the nail is meant to attract the steel magnet, the nail domain realigns itself to produce a pole opposite to the pole of the steel magnet brought near it.
Since the North pole is the opposite of the south pole, the North pole will be at the pointed end of the nail so that it can attract the steel magnet.
Gravity. Hope this helps!
Answer:
Two factors effecting the magnitude of the force of gravity between 2 objects are the product of their masses and square of distance between them.
Explanation:
According to Newton's law of universal gravitation

where F is the gravitational force, G is the universal gravitational constant and its value is 6.6743 × 10⁻¹¹ Nm²/kg₂ , m₁ and m₂ are masses of bodies and r is the distance between them.
It can be seen from the above equation that F is directly proportional to the product of the masses and inversely proportional to the square of distance between them.
F ∝ m₁m₂
F ∝ 1/r²
As far as the masses of the bodies increase, magnitude of the Gravitational force increases and if distance between them increase then Gravitational force between them decreases.