For starters, I would get the same height for each paper, such as a counter top. Then, I would make said paper. You would use a timer of course, maybe even something like a speed gun to calculate the speed as said paper falls. You would push each paper off the counter top and calculate the speed for each paper. This is the easiest way to prove your hypothesis.
The enthalpy<span> of </span>solution<span>, </span>enthalpy<span> of dissolution, or heat of </span>solution<span> is the</span>enthalpy<span> change associated with the dissolution of a substance in a solvent at constant pressure resulting in infinite dilution. The </span>enthalpy<span> of </span>solution<span> is most often expressed in kJ/mol at constant temperature. </span>
Answer:
E° = 1.24 V
Explanation:
Let's consider the following galvanic cell: Fe(s) | Fe²⁺(aq) || Ag⁺(aq) | Ag(s)
According to this notation, Fe is in the anode (where oxidation occurs) and Ag is in the cathode (where reduction occurs). The corresponding half-reactions are:
Anode: Fe(s) ⇒ Fe²⁺(aq) + 2 e⁻
Cathode: Ag⁺(aq) + 1 e⁻ ⇒ Ag(s)
The standard cell potential (E°) is the difference between the standard reduction potential of the cathode and the standard reduction potential of the anode.
E° = E°red, cat - E°red, an
E° = 0.80 V - (-0.44 V) = 1.24 V
Ice caps so it would be D
Hope it helps :-)
Answer:
the HOMO-LUMO energy difference in ethylene is greater than that of cis,trans−1,3−cyclooctadiene
Explanation:
The λmax is the wavelength of maximum absorption. We could use it to calculate the HOMO-LUMO energy difference as follows:
For ethylene
E= hc/λ= 6.63×10^-34×3×10^8/170×10^-9= 1.17×10^-18J
For cis,trans−1,3−cyclooctadiene
E= hc/λ=6.63×10^-34×3×10^8/230×10^-9=8.6×10^-19J
Therefore, the HOMO-LUMO energy difference in ethylene is greater than that of cis,trans−1,3−cyclooctadiene