The boat is moving at 22 m/s while the man is moving at 23.1 m/s.
That means the man, relative to the boat, is moving at 23.1-22 = 1.1 m/s.
v =d/t, so t = d/v --> t = 3/1.1 = 2.7 s
Answer:
glass if for a good view, but for absorbing heat concrete and brick is the best
Explanation:
wood is not a good idea bc it can cause fires from too much heat and it absorbs less heat but all of that depends on how good the material your using
Given:
Gasoline pumping rate, R = 5.64 x 10⁻² kg/s
Density of gasoline, D = 735 kg/m³
Radius of fuel line, r = 3.43 x 10⁻³ m
Calculate the cross sectional area of the fuel line.
A = πr² = π(3.43 x 10⁻³ m)² = 3.6961 x 10⁻⁵ m²
Let v = speed of pumping the gasoline, m/s
Then the mass flow rate is
M = AvD = (3.6961 x 10⁻⁵ m²)*(v m/s)*(735 kg/m³) = 0.027166v kg/s
The gasoline pumping rate is given as 5.64 x 10⁻² kg/s, therefore
0.027166v = 0.0564
v = 2.076 m/s
Answer: 2.076 m/s
The gasoline moves through the fuel line at 2.076 m/s.
Answer:
2.5 m/s²
Explanation:
Given,
Initial speed ( u ) = 10 m/s
Final speed ( v ) = 20 m/s
Time ( t ) = 4 seconds
To find : Acceleration ( a ) = ?
Formula : -
a = ( v - u ) / t
a = ( 20 - 10 ) / 4
= 10 / 4
= 5 / 2
a = 2.5 m/s²
Therefore,
The acceleration of the scooter is 2.5 m/s²
Answer:
Explanation:
The volume of a sphere is:
V = 4/3 * π * a^3
The volume charge density would then be:
p = Q/V
p = 3*Q/(4 * π * a^3)
If the charge density depends on the radius:
p = f(r) = k * r
I integrate the charge density in spherical coordinates. The charge density integrated in the whole volume is equal to total charge.





Since p = k*r
Q = p*π^2*r^3 / 2
Then:
p(r) = 2*Q / (π^2*r^3)