The equilibrium constant K and the forward rate constant
k1 and backward rate constant k2 has the following relation:
K = k1 / k2
So from the equation, we can say that yes it is possible
to have large K even if k1 is small given that k2 is very small compared to k1:
(k2 very less than 1)
<span>k2 << k1</span>
We need
the choices to pick from
Answer:
D. The coefficients give the ratio of mole reactant to moles product.
Explanation:
In stoichiometric calculations, the amount of product formed from reactants can be determined.
- Using this approach, the number of moles of reactants and products on both sides of the expression must be balanced.
- As a rule of thumb, the coefficients give the ratio of moles of reactants to moles of products.
- This is very useful in a number of calculations using the stoichiometric approach.
everything describes physical traits ect. and 3 explains reactions with a different substance so 3
Answer:
92.93 g
Explanation:
Number of half lives that have elapsed in eight days =8/14.3 = 0.559
Fraction of the radioactive nuclide that remains after 0.559 half lives is given by
N/No=(1/2)^0.559
Where N= mass of radioactive nuclides remaining after a time t
No= mass of radioactive nuclides originally present
N/No=(1/2)^0.559= 0.679
Mass of nuclides present eight days before= 63.1g/0.679
Mass of nuclides present eight days before=92.93 g