Answer:
<u>-16200J</u>
Explanation:
(257J/g)(62.9g)
eliminate the variables
u get 16165.3
go to 3 significant digits
u get 16200
and since it is freezing we are taking out energy so it would be
-16200J
<u>Answer:</u> The solubility product of magnesium phosphate tribasic is 
<u>Explanation:</u>
To calculate the molarity of solution, we use the equation:

Given mass of magnesium phosphate = 1.24 g
Molar mass of magnesium phosphate = 262.85 g/mol
Volume of solution = 1 L
Putting values in above equation, we get:

The equation for the ionization of the magnesium phosphate is given as:

Expression for the solubility product of
will be:
![K_{sp}=[Mg^{2+}]^3[PO_4^{3-}]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BMg%5E%7B2%2B%7D%5D%5E3%5BPO_4%5E%7B3-%7D%5D%5E2)
We are given:
![[Mg^{2+}]=(3\times 4.72\times 10^{-3})=1.416\times 10^{-2}M](https://tex.z-dn.net/?f=%5BMg%5E%7B2%2B%7D%5D%3D%283%5Ctimes%204.72%5Ctimes%2010%5E%7B-3%7D%29%3D1.416%5Ctimes%2010%5E%7B-2%7DM)
![[PO_4^{3-}]=(2\times 4.72\times 10^{-3})=9.44\times 10^{-3}M](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%3D%282%5Ctimes%204.72%5Ctimes%2010%5E%7B-3%7D%29%3D9.44%5Ctimes%2010%5E%7B-3%7DM)
Putting values in above expression, we get:

Hence, the solubility product of magnesium phosphate tribasic is 
Erosols aren't aerosols at all. No, really, let's be clear about this. An aerosol is really the cloud<span> of </span>liquid and gas<span>that comes out of an aerosol can, not the can itself. In fact, to be strictly correct about it, an aerosol is a fine mist of liquid, or lots of solid particles, widely and evenly dispersed throughout a gas. So clouds, fog, and steam from your kettle are all examples of aerosols, because they're made up of </span>water<span> droplets dispersed through a much bigger volume of air. Smoke is an aerosol too, though unlike those other examples (which are liquids dispersed in gases) it's made up of </span>solid<span> particles of unburned carbon mixed through a cloud of warm, rising air. Even </span>candles<span> make aerosols: the smoky steam swirling above a candle flame consists of soot and water vapor dispersed through hot air.
HOPE THIS HELP
</span>
The energy of the light with a wavelength of 415 nm is not sufficient to remove an electron from a silver atom in the gaseous phase.
<h3>Energy and wavelength of light</h3>
The energy and wavelength of light are related by the formula given below:
- Energy = hc/λ
- where, E = energy
- h = Planck's constant
- c = velocity of light
- λ = wavelength of light
<h3>Calculating the energy of the light</h3>
From the data provided:
- h = 6.63 × 10^-34 Js
- c = 3.0 × 10^8 m/s
- λ = 415 nm = 4.15 × 10^-7 m
E = (6.63 × 10^-34 × 3.0 × 10^8 m/s)/4.15 × 10^-7 m
E = 4.79 × 10^-19 J
Energy of light is 4.79 × 10^-19 J
Compared with the ionization energy of silver, the energy of the light is far less.
Therefore, the energy of the light with a wavelength of 415 nm is not sufficient to remove an electron from a silver atom in the gaseous phase.
Learn more about about ionization energy and energy of light at: brainly.com/question/14596067
Uno:
El dióxido de Carson (CO2)