Tobacco is the number one drug
<span>Answer: 8.15s
</span><span />
<span>Explanation:
</span><span />
<span>1) A first order reaction is that whose rate is proportional to the concenration of the reactant:
</span><span />
<span>r = k [N]
</span><span />
<span>r = - d[N]/dt =
</span><span />
<span>=> -d[N]/dt = k [N]
</span><span />
<span>2) When you integrate you get:
</span><span />
<span>N - No = - kt
</span>
<span></span><span /><span>
3) Half life => N = No / 2, t = t'
</span><span />
<span>=> No - No/ 2 = kt' => No /2 = kt' => t' = (No/2) / k
</span><span />
<span>3) Plug in the data given: No = 0.884M, and k = 5.42x10⁻²M/s
</span>
<span /><span /><span>
t' = (0.884M/2) / (5.42x10⁻²M/s) = 8.15s</span>
Can you post the question
A) SrBr2
b) C3P4
c) Be3(PO4)2
dCa3P2
e) MnS2O3
d) NO
Answer:
There are other details missing in the question. i.e Assume that x is much larger than the separation d between the charges in the dipole, so that the approximate expression for the electric field along the dipole axis E = p/2πε0y3 can be used, where p is the dipole moment, and y is the distance between ions. A) What is magnitude______N B) Direction? +x-direction or -x-direction C) Is this force attractive or repulsive?
A) Magnitude of electric force = 6.576 x 10 raised to power -13 N
B) Since the force direction is always dependent on the electric field and electric field = F/q, since the chlorine has a negative charge as such the direction of the electric force will be in the X - direction
C) Since the charges are of different nature, as such the force between them will be ATTRACTIVE.
Explanation:
The detailed steps is shown in the attachment