1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natulia [17]
3 years ago
15

Complex poles and zeros. Sketch the asymptotes of the Bode plot magnitude and phase for each of the listed open-loop transfer fu

nctions, and approximate the transition at the second-order break point, based on the value of the damping ratio. After completing the hand sketches, verify your result using Matlab.
L(s)= 1/s(s^2+ 3s+ 10)
Engineering
1 answer:
Sergio [31]3 years ago
7 0
The answer in image

Don't forget put heart ♥️

You might be interested in
A four-cylinder, four-stroke internal combustion engine has a bore of 3.7 in. and a stroke of 3.4 in. The clearance volume is 16
abruzzese [7]

Answer:

1) The three possible assumptions are

a) All processes are reversible internally

b) Air, which is the working fluid circulates continuously in a closed loop

cycle

c) The process of combustion is depicted as a heat addition process

2) The diagrams are attached

5) The net work per cycle is 845.88 kJ/kg

The power developed in horsepower ≈ 45374 hP

Explanation:

1) The three possible assumptions are

a) All processes are reversible internally

b) Air, which is the working fluid circulates continuously in a closed loop

cycle

c) The process of combustion is depicted as a heat addition process

2) The diagrams are attached

5) The dimension of the cylinder bore diameter = 3.7 in. = 0.09398 m

Stroke length = 3.4 in. = 0.08636 m.

The volume of the cylinder v₁= 0.08636 ×(0.09398²)/4 = 5.99×10⁻⁴ m³

The clearance volume = 16% of cylinder volume = 0.16×5.99×10⁻⁴ m³

The clearance volume, v₂  = 9.59 × 10⁻⁵ m³

p₁ = 14.5 lbf/in.² = 99973.981 Pa

T₁ = 60 F = 288.706 K

\dfrac{T_{2}}{T_{1}} = \left (\dfrac{v_{1}}{v_{2}}  \right )^{K-1}

Otto cycle T-S diagram

T₂ = 288.706*6.25^{0.393} = 592.984 K

The maximum temperature = T₃ = 5200 R = 2888.89 K

\dfrac{T_{3}}{T_{4}} = \left (\dfrac{v_{4}}{v_{3}}  \right )^{K-1}

T₄ = 2888.89 / 6.25^{0.393} = 1406.5 K

Work done, W = c_v×(T₃ - T₂) - c_v×(T₄ - T₁)

0.718×(2888.89  - 592.984) - 0.718×(1406.5 - 288.706) = 845.88 kJ/kg

The power developed in an Otto cycle = W×Cycle per second

= 845.88 × 2400 / 60  = 33,835.377 kW = 45373.99 ≈ 45374 hP.

8 0
3 years ago
In an orthogonal cutting operation, the tool has a rake angle = 12°. The chip thickness before the cut = 0.32 mm and the cut yie
Snezhnost [94]

Answer:

The shear plane angle and shear strain are 28.21° and 2.155 respectively.

Explanation:

(a)

Orthogonal cutting is the cutting process in which cutting direction or cutting velocity is perpendicular to the cutting edge of the part surface.  

Given:  

Rake angle is 12°.  

Chip thickness before cut is 0.32 mm.

Chip thickness is 0.65 mm.  

Calculation:  

Step1  

Chip reduction ratio is calculated as follows:  

r=\frac{t}{t_{c}}

r=\frac{0.32}{0.65}

r = 0.4923

Step2  

Shear angle is calculated as follows:  

tan\phi=\frac{rcos\alpha}{1-rsin\alpha}

Here, \phi is shear plane angle, r is chip reduction ratio and \alpha is rake angle.  

Substitute all the values in the above equation as follows:  

tan\phi=\frac{rcos\alpha}{1-rsin\alpha}

tan\phi=\frac{0.4923cos12^{\circ}}{1-0.4923sin12^{\circ}}

tan\phi=\frac{0.48155}{0.8976}

\phi=28.21^{\circ}

Thus, the shear plane angle is 28.21°.

(b)

Step3

Shears train is calculated as follows:

\gamma=cot\phi+tan(\phi-\alpha)

\gamma=cot28.21^{\circ}+tan(28.21^{\circ}-12^{\circ})\gamma = 2.155.

Thus, the shear strain rate is 2.155.

6 0
3 years ago
What is a combination circuit? A combination circuit:
Anon25 [30]

Answer:

Combination circuit; The basic strategy for the analysis of combination circuits involves using the meaning of equivalent resistance for parallel branches to transform the combination circuit into a series circuit.

Example:

The use of both series and parallel connections within the same circuit. In this case, light bulbs A and B are connected by parallel connections and light bulbs C and D are connected by series connections. This is an example of a combination circuit.

7 0
2 years ago
A heavy ball with a weight of 150 N is hung from the ceiling of a lecture hall on a 4.0-m-long rope. The ball is pulled to one s
shusha [124]

Answer:

The tension in the rope at the lowest point is 270 N

Explanation:

Given;

weight of the ball, W = 150 N

length of the rope, r = 4 m

velocity of the ball, v = 5.6 m/s

When the ball passes through the lowest point, the tension on the rope is the sum of weight of the ball and centripetal force.

T = W + F

Centripetal force, F = mv²/r

where;

m is the mass of the ball

m = W/g

m = 150 / 9.8 = 15.306 kg

Centripetal force, F = mv²/r

F = (15.306 x 5.6²)/4

F = 120 N

T = W + F

T = 150 + 120

T = 270 N

Therefore, the tension in the rope at the lowest point is 270 N

6 0
3 years ago
Consider a Carnot heat pump cycle executed in a steady-flow system in the saturated mixture region using R-134a flowing at a rat
attashe74 [19]

Answer:

7.15

Explanation:

Firstly, the COP of such heat pump must be measured that is,

              COP_{HP}=\frac{T_H}{T_H-T_L}

Therefore, the temperature relationship, T_H=1.15\;T_L

Then, we should apply the values in the COP.

                           =\frac{1.15\;T_L}{1.15-1}

                           =7.67

The number of heat rejected by the heat pump must then be calculated.

                   Q_H=COP_{HP}\times W_{nst}

                          =7.67\times5=38.35

We must then calculate the refrigerant mass flow rate.

                   m=0.264\;kg/s

                   q_H=\frac{Q_H}{m}

                         =\frac{38.35}{0.264}=145.27

The h_g value is 145.27 and therefore the hot reservoir temperature is 64° C.

The pressure at 64 ° C is thus 1849.36 kPa by interpolation.

And, the lowest reservoir temperature must be calculated.

                   T_L=\frac{T_H}{1.15}

                        =\frac{64+273}{1.15}=293.04

                        =19.89\°C

the lowest reservoir temperature = 258.703  kpa                    

So, the pressure ratio should be = 7.15

8 0
3 years ago
Other questions:
  • A pressure gage connected to a tank reads 50 psi at a location where the barometric reading is 29.1 inches Hg. Determine the abs
    6·1 answer
  • A power company desires to use groundwater from a hot spring to power a heat engine. If the groundwater is at 95 deg C and the a
    7·1 answer
  • Disconnecting means shall be capable of being locked in the open position. The provisions for locking do not have to reamin in p
    14·1 answer
  • A 2.5 m wide rough continuous foundation is placed in the ground at 1 m depth. There is bedrock present at 1 m depth below the b
    12·1 answer
  • Which of the following describes a polar orbit?
    7·1 answer
  • What is the basic formula for actual mechanical advantage?
    12·1 answer
  • In order to lift a lighter object on the other side, a boy placed 155 N of
    6·1 answer
  • Cast iron has about how much carbon content?
    12·1 answer
  • Select the correct answer.
    11·1 answer
  • Which of the following is critical when performing maintenance?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!