1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
enot [183]
3 years ago
6

1. A drawing of a cabinet shows that its dimensions are 9cm. by 4cm. The drawing indicates 1:50 scaling. What are the actual dim

ensions of the cabinet? 
2. Bongbong is tasked to draw a floor plan with a scale of 1:100. If the total length of the actual house is 8 meters, what will be its corresponding measurement in centimeters in floor plan?


3.The length of a bedroom measures 2.5 m., what will be the measurement in centimeters to be used in the drawing if it is in 1:50 scale?​
Engineering
1 answer:
yanalaym [24]3 years ago
5 0

Explanation:

This means that for every 1 cm on the drawing, there is 80 cm in reality. To put it another way, take this

1:80 means that the building is 80 times the size of the drawing

80:1 means that the drawing is 80 times the size of the building

If it were 80:1, the drawing itself would be over 100m long.

You might be interested in
Thermal energy storage systems commonly involve a packed bed of solid spheres, through which a hot gas flows if the system is be
hammer [34]

Answer:

A) i) 984.32 sec

ii) 272.497° C

B) It has an advantage

C) attached below

Explanation:

Given data :

P = 2700 Kg/m^3

c = 950 J/kg*k

k = 240 W/m*K

Temp at which gas enters the storage unit  = 300° C

Ti ( initial temp of sphere ) = 25°C

convection heat transfer coefficient ( h ) = 75 W/m^2*k

<u>A) Determine how long it takes a sphere near the inlet of the system to accumulate 90% of the maximum possible energy and the corresponding temperature at the center of sphere</u>

First step determine the Biot Number

characteristic length( Lc ) = ro / 3 = 0.0375 / 3 = 0.0125

Biot number ( Bi ) = hLc / k = (75)*(0.0125) / 40 = 3.906*10^-3

Given that the value of the Biot number is less than 0.01 we will apply the lumped capacitance method

attached below is a detailed solution of the given problem

<u>B) The physical properties are copper</u>

Pcu = 8900kg/m^3)

Cp.cu = 380 J/kg.k

It has an advantage over Aluminum

C<u>) Determine how long it takes a sphere near the inlet of the system to accumulate 90% of the maximum possible energy and the corresponding temperature at the center of sphere</u>

Given that:

P = 2200 Kg/m^3

c = 840 J/kg*k

k = 1.4 W/m*K

3 0
3 years ago
As temperature decreases a batteries availability power what
SSSSS [86.1K]
The answer is increases because when something like that decreases it’s always decreasing that probly makes no sense Imao but it’s increases
7 0
3 years ago
A thin aluminum sheet is placed between two very large parallel plates that are maintained at uniform temperatures T1 = 900 K, T
Maru [420]

The net radiation heat transfer between the two plates per unit surface area of the plates with shield and without shied are respectively; 2282.76 W/m² and 9766.75 W/m²

<h3>How to find the net radiation heat transfer?</h3>

We are given;

Temperature 1; T₁

Temperature 2; T₂

Temperature 3; T₃

Emissivity 1; ε₁ = 0.3

Emissivity 2; ε₂ = 0.7

Emissivity 3; ε₃ = 0.2

The net rate of radiation heat transfer with a thin aluminum shield per unit area of the plates with shield is;

Q'₁₂ = σ(T₁⁴ - T₂⁴)]/[((1/ε₁) + (1/ε₂) - 1) + ((1/ε₃,₁) + (1/ε₃,₂) - 1)]

Q'₁₂ = 5.67 * 10⁻⁸(900⁴ - 300⁴)/[((1/0.3) + (1/0.7) - 1) + ((1/0.15) + (1/0.15) - 1)]

Q'₁₂,shield = 2282.76 W/m²

The net rate of radiation heat transfer with a thin aluminum shield per unit area of the plates with no shield is;

Q'₁₂,no shield = σ(T₁⁴ - T₂⁴)]/((1/ε₁) + (1/ε₂) - 1))

Q'₁₂,no shield = 5.67 * 10⁻⁸(900⁴ - 300⁴)/[(1/0.3) + (1/0.7) - 1)]

Q'₁₂,no shield = 9766.75 W/m²

Then the ratio of radiation heat transfer for the two cases becomes;

Q'₁₂,shield/Q'₁₂,no shield = 2282.76/9766.75 = 0.2337 or 4/17

Read more about Net Radiation Heat Transfer at; brainly.com/question/14148915

#SPJ1

8 0
2 years ago
A heat engine receives 6 kW from a 250oC source and rejects heat at 30oC. Examine each of three cases with respect to the inequa
taurus [48]

Answer:

Explanation:

Given

T_h=250^{\circ}C\approx 523\ K

T_L=30^{\circ}C\approx 303\ K

Q_1=6 kW

From Clausius inequality

\oint \frac{dQ}{T}=0  =Reversible cycle

\oint \frac{dQ}{T}  =Irreversible cycle

\oint \frac{dQ}{T}>0  =Impossible

(a)For P_{out}=3 kW

Rejected heat Q_2=6-3=3\ kW

\oint \frac{dQ}{T}= \frac{Q_1}{T_1}-\frac{Q_2}{T_2}

=\frac{6}{523}-\frac{3}{303}=1.57\times 10^{-3} kW/K

thus it is Impossible cycle

(b)P_{out}=2 kW

Q_2=6-2=4 kW

\oint \frac{dQ}{T}= \frac{Q_1}{T_1}-\frac{Q_2}{T_2}

=\frac{6}{523}-\frac{4}{303}=-1.73\times 10^{-3} kW/K

Possible

(c)Carnot cycle

\frac{Q_2}{Q_1}=\frac{T_1}{T_2}

Q_2=3.47\ kW

\oint \frac{dQ}{T}= \frac{Q_1}{T_1}-\frac{Q_2}{T_2}

=\frac{6}{523}-\frac{3.47}{303}=0

and maximum Work is obtained for reversible cycle when operate between same temperature limits

P_{out}=Q_1-Q_2=6-3.47=2.53\ kW

Thus it is possible

6 0
4 years ago
At a festival, spherical balloons with a radius of 140.cm are to be inflated with hot air and released. The air at the festival
Tpy6a [65]

Answer:

find attached

Explanation:

5 0
3 years ago
Other questions:
  • ______process in sheet metal is used for producing fluid tight joints. A - Hemming B- Seaming C-Beading D-Roll forming
    9·1 answer
  • A transmitter on the moon emits sound and light waves to a receiver on Earth. The light waves are picked up by the receiver but
    10·1 answer
  • An assembly line in a modern business compared to 1 from Henry Ford's time is more likely to rely on which of the following unsk
    13·1 answer
  • Is there a way to get the answers to a NCCER book test?
    7·1 answer
  • Design a solid steel shaft to transmit 14 hp at a speed of 2400rpm f the allowable shearing stress is given as 3.5 ksi.
    10·1 answer
  • Acquisition of resources from an external source is called?
    15·1 answer
  • Describe three examples of how metrology can improve the safety of automobiles.
    12·1 answer
  • A structural element for a new bridge is designed for a constant load of 1000 psi. Its mean resistance is 1200 psi and the proba
    7·1 answer
  • What is the purpose of a television​
    11·1 answer
  • When the same type of arc is used in more than one place, what note is included with the dimension?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!