True no object can travel faster than speed of light
Modern space suits augment the basic pressure garment with a complex system of equipment and environmental systems designed to keep the wearer comfortable, and to minimize the effort required to bend the limbs, resisting a soft pressure garment's natural tendency to stiffen against the vacuum. A self-contained oxygen supply and environmental control system is frequently employed to allow complete freedom of movement, independent of the spacecraft.
Three types of spacesuits exist for different purposes: IVA (intravehicular activity), EVA (extravehicular activity), and IEVA (intra/extravehicular activity). IVA suits are meant to be worn inside a pressurized spacecraft, and are therefore lighter and more comfortable. IEVA suits are meant for use inside and outside the spacecraft, such as the Gemini G4C suit. They include more protection from the harsh conditions of space, such as protection from micrometeorites and extreme temperature change. EVA suits, such as the EMU, are used outside spacecraft, for either planetary exploration or spacewalks. They must protect the wearer against all conditions of space, as well as provide mobility and functionality.
The focal length of given concave lens will be -26.85 cm
The height of an image to the height of an object is the ratio that is used to determine a lens' magnification. Additionally, it is provided in terms of object and image distance. It is equivalent to the object distance to image distance ratio.
Given concave lens creates a virtual image at -47.0 cm and a magnification of +1.75.
We have to find focal length
The focal length can be found out by following way:
Magnification = m = +1.75
m = hi/h
hi = -47 cm
1.75 = -47/h
h = -26.85 cm
So the focal length of given concave lens will be -26.85 cm
Learn more about magnification factor here:
brainly.com/question/6947486
#SPJ10
Based on the calculations, the angle through which the tire rotates is equal to 4.26 radians and 244.0 degrees.
<h3>How to calculate the angle?</h3>
In Physics, the distance covered by an object in circular motion can be calculated by using this formula:
S = rθ
<u>Where:</u>
- r is the radius of a circular path.
- θ is the angle measured in radians.
Substituting the given parameters into the formula, we have;
1.87 = 0.44 × θ
θ = 1.87/0.44
θ = 4.26 radians.
Next, we would convert this value in radians to degrees:
θ = 4.26 × 180/π
θ = 4.26 × 180/3.142
θ = 244.0 degrees.
Read more on radians here: brainly.com/question/19758686
#SPJ1