Answer:
Answer D: It describes the relationship between motion and force.
Explanation:
The answer is D because a law is something that describes something in nature, but does not try to explain how or why is occurs (that is a theory). Options B and C sound more like theories, while option A sounds like a definition. Option D is correct because a law describes without explaining.
Answer:
Super idoo di shaw lung domini di shaw
Answer:
Twice as fast
Explanation:
Solution:-
- The mass of less massive cart = m
- The mass of Massive cart = 2m
- The velocity of less massive cart = u
- The velocity of massive cart = v
- We will consider the system of two carts to be isolated and there is no external applied force on the system. This conditions validates the conservation of linear momentum to be applied on the isolated system.
- Each cart with its respective velocity are directed at each other. And meet up with head on collision and comes to rest immediately after the collision.
- The conservation of linear momentum states that the momentum of the system before ( P_i ) and after the collision ( P_f ) remains the same.

- Since the carts comes to a stop after collision then the linear momentum after the collision ( P_f = 0 ). Therefore, we have:

- The linear momentum of a particle ( cart ) is the product of its mass and velocity as follows:
m*u - 2*m*v = 0
Where,
( u ) and ( v ) are opposing velocity vectors in 1-dimension.
- Evaluate the velcoity ( u ) of the less massive cart in terms of the speed ( v ) of more massive cart as follows:
m*u = 2*m*v
u = 2*v
Answer: The velocity of less massive cart must be twice the speed of more massive cart for the system conditions to hold true i.e ( they both come to a stop after collision ).
Alessandro Volta's battery was a simple and reliable source of electric current, which allowed scientists to study electricity better than they could with previous sources, such as the Leyden jar, and allowed the development of new technology powered by electricity.
Answer: If a positively charged ion is more concentrated outside the cell, the forces required to balance the chemical gradient would be directed OUTWARD. Thus, the equilibrium potential for this ion would be POSITIVELY charged. The correct answer is OUTWARD: POSITIVELY.
Explanation: Usually across a cell membrane there is a force that acts on it which is as a result of unequal distribution of charges. This force is known as electrochemical driving force. It is determined by the difference between the membrane potential ( that is, the electrical potential difference across the cell membrane) and the ion equilibrium potential. The membrane potential of a cell helps in signal transmission between different parts of the cell and results when there is unequal distribution across the cell.
Therefore If a positively charged ion is more concentrated outside the cell, the forces required to balance the chemical gradient would be directed outward.Thus, the equilibrium potential for this ion would be positively charged.