I say the answers is A but if you mean ventilation in the area of the room then answer B
Answer You ask your coach
Answer:
t = 6179.1 s = 102.9 min = 1.7 h
Explanation:
The energy provided by the resistance heater must be equal to the energy required to boil the water:
E = ΔQ
ηPt = mH
where.
η = efficiency = 84.5 % = 0.845
P = Power = 2.61 KW = 2610 W
t = time = ?
m = mass of water = 6.03 kg
H = Latent heat of vaporization of water = 2.26 x 10⁶ J/kg
Therefore,
(0.845)(2610 W)t = (6.03 kg)(2.26 x 10⁶ J/kg)

<u>t = 6179.1 s = 102.9 min = 1.7 h</u>
Answer:
a) 159.07 MPa
b) 10.45 MPa
c) 79.535 MPa
Explanation:
Given data :
length of cantilever beam = 1.5m
outer width and height = 100 mm
wall thickness = 8mm
uniform load carried by beam along entire length= 6.5 kN/m
concentrated force at free end = 4kN
first we determine these values :
Mmax = ( 6.5 *(1.5) * (1.5/2) + 4 * 1.5 ) = 13312.5 N.m
Vmax = ( 6.5 * (1.5) + 4 ) = 13750 N
A) determine max bending stress
б =
=
= 159.07 MPa
B) Determine max transverse shear stress
attached below
ζ = 10.45 MPa
C) Determine max shear stress in the beam
This occurs at the top of the beam or at the centroidal axis
hence max stress in the beam = 159.07 / 2 = 79.535 MPa
attached below is the remaining solution
Answer:
It would take approximately 305 s to go to 99% completion
Explanation:
Given that:
y = 50% = 0.5
n = 1.7
t = 100 s
We need to first find the parameter k from the equation below.

taking the natural logarithm of both sides:

Substituting values:

Also
![t^n=-\frac{ln(1-y)}{k}\\t=\sqrt[n]{-\frac{ln(1-y)}{k}}](https://tex.z-dn.net/?f=t%5En%3D-%5Cfrac%7Bln%281-y%29%7D%7Bk%7D%5C%5Ct%3D%5Csqrt%5Bn%5D%7B-%5Cfrac%7Bln%281-y%29%7D%7Bk%7D%7D)
Substituting values and y = 99% = 0.99
![t=\sqrt[n]{-\frac{ln(1-y)}{k}}=\sqrt[1.7]{-\frac{ln(1-0.99)}{2.76*10^{-4}}}=304.6s](https://tex.z-dn.net/?f=t%3D%5Csqrt%5Bn%5D%7B-%5Cfrac%7Bln%281-y%29%7D%7Bk%7D%7D%3D%5Csqrt%5B1.7%5D%7B-%5Cfrac%7Bln%281-0.99%29%7D%7B2.76%2A10%5E%7B-4%7D%7D%7D%3D304.6s)
∴ t ≅ 305 s
It would take approximately 305 s to go to 99% completion