Answer:
force (tension) of 29.4 N (upward) in 100 cm
force (tension) of 58.4 N (upward) in 200 cm
Explanation:
Given:
Length of tube = 5 m (500 cm)
Mass of tube = 9
Suspended vertically from 150 cm and 50 cm.
Computation:
Force = Mass × gravity acceleration.
Force = 9.8 x 9
Force = 88.2 N
So,
Upward forces = Downward forces
D1 = 150 - 50 = 100 cm
D2 = 150 + 50 = 200 cm
And F1 = F2
F1 x D1 = F2 x D2
F1 x 100 = F2 x 200
F = 2F
Total force = Upward forces + Downward forces
3F = 88.2
F = 29.4 and 2F = 58.8 N
force (tension) of 29.4 N (upward) in 100 cm
force (tension) of 58.4 N (upward) in 200 cm
Answer:
Explanation:
Altitude of the Sun and the latitude position on the earth play an important role in the season change on the earth.
When the altitude of the sun is high then the average temperature of the earth is higher because the luminous intensity of the sun rays is higher due to the focusing of high energy sun rays over a small area.
But when the sun is at higher altitudes we receive less denser rays of the sun and hence we have less heat on the earth on an average.
- But despite of the altitude some places on the earth have distinct temperature than the other place at the same time of the year. This is due to their latitudinal location. The places near the equator are warmer most of the times throughout the year because they receive the most direct rays while the poles receive slanting rays and hence are colder even in summer when the earth is at lower altitudes.
Answer:
22Volts
Explanation:
The pd at the terminal is known as the emf
Since there are Ten 2.2V cells
Terminal voltage = number of cells * pd of one cell
Terminal voltage = 10 * 2.2
Terminal voltage = 22V
Hence the pd at the battery terminals is 22Volts
Answer:
fibrous =potato
taproot =radish
stilt =maize and sugar cane
Given that:
Energy of bulb (Work ) = 30 J,
Time (t) = 3 sec
The power consumption = ?
We know that, Power can be defined as rate of doing work
Power (P) = Work(Energy supplied) ÷ time
= 30 ÷ 3
= 10 Watts
<em> The power consumption is 10 W.</em>