To solve this problem we will apply the concepts related to the final volume of a body after undergoing a thermal expansion. To determine the temperature, we will use the given relationship as well as the theoretical value of the volumetric coefficient of thermal expansion of copper. This is, for example to the initial volume defined as
, the relation with the final volume as



Initial temperature = 
Let T be the temperature after expanding by the formula of volume expansion
we have,

Where
is the volume coefficient of copper 




Therefore the temperature is 53.06°C
Gravitational force is a non-contact force.
<span>the same amount of work being done over a longer period of time.</span>
To find or discover by investigation?
Answer:
V = 2.87 m/s
Explanation:
The minimum speed required would be that at which the acceleration due to gravity is negated by the centrifugal force on the water.
Thus, we simply need to set the centripetal acceleration equal to gravity and solve for the speed V using the following equation:
Centripetal acceleration = V^2 / r
where r is the distance of water from the pivot or shoulder.
For our case, r will be 0.65 + 0.19 = 0.84 m
and solving the above equation we get:
9.81 = V^2 / 0.84
V^2 = 8.2404
V = 2.87 m/s