Answer:
(a) The initial speed required is 13116 m/s
(b) The escape speed is 10394 m/s
This problem involves the application of newtons laws of gravitation. The forces in action here are conservative and as a result mechanical energy is conserved.
The full calculation can be found in the attachment below.
Explanation:
In both parts (a) and (b) the energy conservation equation were used. Assumption was made that when the object is very far from the planet the distance from the planet's center approaches infinity and the gravitational potential energy approaches zero.
The calculation can be found below.
Answer:
Its mechanical energy is the same.
Explanation:
If forces are only conservative, the mechanical energy will be the same.
It can be different if energy get transformed in another kind of energy like elastic energy for example, although the amount of energy is always the same.
If we just have mechanical energy not geting transformed we have:
Em=K+U
Em: Mechanical energy
K: Kinetic energý
U: Potential energy
Then if Kinetic energy decreases 10J, Potential energy will grow up 10J to keep the same amount of mechanical energy.
Answer:
perihelion
Explanation:
The point at which a planet is closest to the sun is called perihelion. The farthest point is called aphelion
Answer:
The angle of incident ray is 40°.
Explanation:
Given that the angle of incident and reflected ray are the same. In this question, we had given that both angles added up will gives you 80° so you have to divide it by 2 :
incident + reflected = 80°
Let incident = reflected = θ
θ + θ = 80°
2θ = 80°
θ = 80° ÷ 2
= 40°
The distance between two basket ball sized aluminium balls is 9714 m.
Explanation:
Coulomb's law, or Coulomb's inverse-square law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force or Coulomb force .
Coulomb's law formula => F = (k * Qb1 * Qb2)/r²
Given data :-
charge on ball 1 Qb1 = 6C
charge on ball 2 Qb2 = 14C
Force exerted F = 8000 N
k = 8.988 x 10^9 Nm²C−²(coulomb's constant).
substituting given values in the coulomb's formula
8000 = (( 8.988 x 10^9)*6*14)/r²
shifting r and 8000 to other sides
r² = (756 * 10^9)/8000
r = 9714 m.
Therefore the distance between two balls is r = 9714 m.