____NaNO3 + ___PbO --> ___Pb(NO3)2 + ___Na[2]O
To balace the eqaution, you need to have the same number of atoms for each element on both the reactant (left) and product (right) side.
To start off, you wanna know the number of atoms in each element on both sides, so take it apart:
[reactants] [product]
Na- 1 Na- 2
N- 1 N- 2(it's 2 because the the subscript [2] is outside of the parenthesis)
O- 4 O- 7 (same reason as above)
Pb- 1 Pb- 1
Na is not balanced out, so add a coefficient to make it the same on both sides.In this case, multiply by 2:
2NaNO3
Now Na is balanced, but the N and O are also effected by this, so they also have to be multiplied by 2 and they become:
Na- 2 Na- 2
N- 2 N- 2 (it balanced out)
O- 7 (coefficient times subscript, plus lone O) O- 7 (balanced out)
Pb was already balanced so no need to mess with it, just put a 1 where needed (it doesn't change anything).
Now to put it back together, it will look like this:
2NaNO3 + 1PbO --> 1Pb(NO3)2 + 1Na[2]O
Answer:
- <u>Alkaline or basic solution </u>(alkaline and basic means the same)
Explanation:
According to the <em>pH</em>, solutions may be classified as neutral, acidic, or alkaline (basic).
This table shows such classification:
pH classification
7 neutral
> 7 alkaline or basic
< 7 acidic
Thus, since the pH of the solution is 8.3, which is greater than 7, the solution is classified as basic (alkaline).
Additionally, you must learn that pH is a logarithmic scale for the concentration of hydronium ions in the solution.
You can calculate the concentration of hydronium ions using antilogarithm properties:
![pH=-log[H_3O^+]\\ \\ {[H_3O^+]}=10^{-pH}\\ \\ {[H_3O^+]}=10^{-8.3}=0.00000000501](https://tex.z-dn.net/?f=pH%3D-log%5BH_3O%5E%2B%5D%5C%5C%20%5C%5C%20%7B%5BH_3O%5E%2B%5D%7D%3D10%5E%7B-pH%7D%5C%5C%20%5C%5C%20%7B%5BH_3O%5E%2B%5D%7D%3D10%5E%7B-8.3%7D%3D0.00000000501)
NaOH solutions are alkaline solutions, bases, according to Arrhenius model, because they contain OH⁻ ions and release them when ionize in water.
iron Presence of trace elements, irradiation and iron impurities give the gem amethyst its purplish color!
Answer:
potassium
The third alkali metal is K (potassium). The atomic number of K (potassium) is 19. Thus, the atomic number of third alkali metal is 19
Explanation:
Answer:
1 litre = 1000 millilitres