1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BartSMP [9]
2 years ago
7

Principle of electroplating​

Physics
2 answers:
frosja888 [35]2 years ago
4 0

dnxjjc cjgnjgjnffjnfkfmgkcknsmksjs dmxmcmfkcnfjcnfjfnfjf in jfnfifnfifnf

uysha [10]2 years ago
3 0

Answer:

Electroplating is the method of depositing one metal over another in the presence of a metal salt (in aqueous solution). The water molecule is released as the final product in this process. As a consequence, electroplating is based on the theory of hydrolysis.

You might be interested in
How do i find stretch? The problem in questioning has already given me the elastic energy and k-value, but I have no idea how to
finlep [7]

Answer:

Stretch can be obtained using the Elastic potential energy formula.

The expression to find the stretch (x) is x=\sqrt{\frac{2\times EPE}{k}}

Explanation:

Given:

Elastic potential energy (EPE) of the spring mass system and the spring constant (k) are given.

To find: Elongation in the spring (x).

We can find the elongation or stretch of the spring using the formula for Elastic Potential Energy (EPE).

The formula to find EPE is given as:

EPE=\frac{1}{2}kx^2

Rewriting the above expression in terms of 'x', we get:

x=\sqrt{\frac{2\times EPE}{k}}

Example:

If EPE = 100 J and spring constant, k = 2 N/m.

Elongation or stretch is given as:

x=\sqrt{\frac{2\times EPE}{k}}\\\\x=\sqrt{\frac{2\times 100}{2}}\\\\x=\sqrt{100}=10\ m

Therefore, the stretch in the spring is 10 m.

So, stretch in the spring can be calculated using the formula for Elastic Potential Energy.

6 0
2 years ago
A+10 u charge and a -10 4C (1 HC - 106 C), at a distance of 0.3 m,
Marina CMI [18]

Answer:

B. Attract each other with a force of 10 newtons.

Explanation:

Statement is incorrectly written. <em>The correct form is: A </em>+10\,\mu C<em> charge and a </em>-10\,\mu C<em> at a distance of 0.3 meters. </em>

The two particles have charges opposite to each other, so they attract each other due to electrostatic force, described by Coulomb's Law, whose formula is described below:

F = \frac{\kappa \cdot |q_{A}|\cdot |q_{B}|}{r^{2}} (1)

Where:

F - Electrostatic force, in newtons.

\kappa - Electrostatic constant, in newton-square meters per square coulomb.

|q_{A}|,|q_{B}| - Magnitudes of electric charges, in coulombs.

r - Distance between charges, in meters.

If we know that \kappa  = 8.988\times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}}, |q_{A}| = |q_{B}| = 10\times 10^{-6}\,C and r = 0.3\,m, then the magnitude of the electrostatic force is:

F = \frac{\kappa \cdot |q_{A}|\cdot |q_{B}|}{r^{2}}

F = 9.987\,N

In consequence, correct answer is B.

4 0
3 years ago
The ball has 7.35 joules of potential energy at position B. At position A, all of the energy changes to kinetic energy. The velo
Lina20 [59]
I assume that the ball is stationary (v=0) at point B, so its total energy is just potential energy, and it is equal to 7.35 J. 
At point A, all this energy has converted into kinetic energy, which is:
K= \frac{1}{2}mv^2
And since K=7.35 J, we can find the velocity, v:
v= \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 7.35 J}{1.5 kg} }=3.1 m/s
3 0
2 years ago
A driver entering the outskirts of a city takes her foot off the accelerator so that the car slows down from 90 km/h to 50 km/h
Varvara68 [4.7K]

Answer:

Explanation:

a = (vf - vi) / t

a = (50 - 90) / 10.0

a = -4 km/h/s(1000 m/km / 3600 s/h)

a = - 1.11 m/s²

5 0
2 years ago
The length of a rectangle is increasing at a rate of 4 cm/s and its width is increasing at a rate of 6 cm/s. When the length is
Fudgin [204]

Answer:

24cm/s

Explanation:

A=L*w

A'=L'*w'

L=13

w=5

L'=4

w'=6

A=?

A'=?

A=L*w

A=13*5

A=65

A'=L'*w'

A'=4*6

A'=24

*the given lengths are just to throw you off*

3 0
2 years ago
Other questions:
  • A laser pulse takes 2.56 seconds to travel from Earth to the Moon and return. Use this to calculate how far away the Moon is. Ho
    14·1 answer
  • What is the mass of a car that weighs 19,000 N on earth?
    10·1 answer
  • Which two substances have no fixed shape and no fixed volume?
    9·1 answer
  • Required information Problem 16.048 - DEPENDENT MULTI-PART PROBLEM - ASSIGN ALL PARTS NOTE: This is a multi-part question. Once
    10·1 answer
  • The center of the Hubble space telescope is 6940 km from Earth’s center. If the gravitational force between Earth and the telesc
    5·2 answers
  • The origin of an x axis is placed at the center of a nonconducting solid sphere of radius R that carries a charge +qsphere distr
    15·1 answer
  • Help!!!! ASAP!!! A loop of area 0.100 m^2 is oriented at 15.5 degree angle to a 0.500 T magnetic field. It rotates until it is a
    5·1 answer
  • PLEASE HELP WILL MARK BRAINLIEST
    12·1 answer
  • The Magnetic Dipole Moment of a Coil Problem A rectangular coil of dimensions 5.40 cm ✕ 8.50 cm consists of 25 turns of wire and
    8·1 answer
  • 5.00-kg particle starts from the origin at time zero. Its velocity as a function of time is given by v =6t^2 i + 2t j where v is
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!