Answer:
One of the indirect proofs that orbits change is actually in the growth of our own teeth when we were children. our teeth are some of the most basic, and primitive
parts of our bodies. They grow on a 9 day cycle, which was an ancient full moon to full moon cycle when the Earth and the Moon were a lot smaller, and closer together, and the co-orbital period was only 9 days, not the 29.5 days that it is currently.
So Given any two " Planets " that co-orbit a common gravitational center, the larger planet will grow larger far faster than the smaller planet, and the larger planet will accelerate the smaller planet to a higher orbit with a longer period, and decelerate itself to a lower orbit with a longer period, and the absolute value of the center to center distance will increase, and the orbital period will increase. The two orbs and their common gravitational center will remain co-linear through out the gradual growing and changing process.
This is an important process for the enlargement of the solar system as time passes, and an important process for larger galaxies as they attract and merge with smaller galaxies.
All of the planets grow larger at an accelerating rate, and thus systems spiral outward concentrating mass into larger and fewer galaxies, solar systems, and planet - moon systems.
<span>the one that should be taken as consideration when describing the quality of a sound is: D.The number of the overtones in the sound
Too many overtones indicated that there is too many unrelated sound that make a lot of the sound's part became redundant and unecessary</span>
C. fly in a straight line unless an outside force changes its course.
Answer:
If an object is electrically neutral it has no net charge becuase it has the same number of protons as it does electrons, which are opposite charges that offset each other. No, that just means that the sum of all its positive and negative amounts of charge equals zero.
I'm happy to know that the diagram shows how it's all set up.
If I could see the diagram, then I could probably do a much
better job with an answer. As it is ... 'flying blind' as it were ...
I'm going to wing it and hope it's somewhat helpful.
If the pulley is movable, then I'm picturing one end of the rope
tied to a hook in the ceiling, then the rope passing down through
the pulley, then back up, and you lifting the free end of the rope.
A very useful rule about movable and combination pulleys is:
the force needed to lift the load is
(the weight of the load)
divided by
(the number of strands of rope supporting the load) .
With the setup as I described it, there are 2 strands of rope
supporting the load ... one on each side of the pulley. So the
force needed to lift the load is
(250 N) / 2 = 125 N .