Explanation:
Let us assume that the given data is as follows.
mass of barium acetate = 2.19 g
volume = 150 ml = 0.150 L (as 1 L = 1000 ml)
concentration of the aqueous solution = 0.10 M
Therefore, the reaction equation will be as follows.

Hence, moles of
=
.......... (1)
As, No. of moles =
Hence, moles of
will be calculated as follows.
No. of moles =
=
(molar mass of
is 255.415 g/mol)
= 
Moles of
= 
= 0.01715 mol
Hence, final molarity will be as follows.
Molarity = 
= 
= 0.114 M
Thus, we can conclude that final molarity of barium cation in the solution is 0.114 M.
Answer:your answer is 0.95
Explanation:
Because you put the number down if it is in the hundreds then put into a decimal that it is in the hundredths:)
Answer:
1) ΔG°r(298 K) = - 28.619 KJ/mol
2) ΔG°r will decrease with decreasing temperature
Explanation:
- CO(g) + H2O(g) → H2(g) + CO2(g)
1) ΔG°r = ∑νiΔG°f,i
⇒ ΔG°r(298 K) = ΔG°CO2(g) + ΔG°H2(g) - ΔG°H2O(g) - ΔG°CO(g)
from literature, T = 298 K:
∴ ΔG°CO2(g) = - 394.359 KJ/mol
∴ ΔG°CO(g) = - 137.152 KJ/mol
∴ ΔG°H2(g) = 0 KJ/mol........pure substance
∴ ΔG°H2O(g) = - 228.588 KJ/mol
⇒ ΔG°r(298 K) = - 394.359 KJ/mol + 0 KJ/mol - ( - 228.588 KJ/mol ) - ( - 137.152 KJ7mol )
⇒ ΔG°r(298 K) = - 28.619 KJ/mol
2) K = e∧(-ΔG°/RT)
∴ R = 8.314 E-3 KJ/K.mol
∴ T = 298 K
⇒ K = e∧(-28.619/(8.314 E-3)(298) = 9.624 E-6
⇒ ΔG°r = - RTLnK
If T (↓) ⇒ ΔG°r (↓)
assuming T = 200 K
⇒ ΔG°r(200 K) = - (8.314 E-3)(200)Ln(9.624E-3)
⇒ ΔG°r (200K) = - 19.207 KJ/mol < ΔG°r(298 K) = - 28.619 KJ/mol
Answer is: an instant ice pack becoming cold, splitting a gas molecule and baking bread.
<span>Endothermic reaction
is chemical reaction that absorbs more energy than it releases.
</span>In ice pack, <span>reaction absorbs heat from the surroundings (endothermic reaction), lowering the surrounding temperature.
For splitting molecule and baking bread we must add energy to break bonds between atoms.</span>