Matter buddy, ur welcome :)
We could reduce soil erosion and recycle phosphorus from farm and human waste so that we could help make food production sustainable and prevent algae blooms. We can also do land reclamation as well to help solve this problem. With the land, we would have to design a system to where the land could be functional again in order to plant crops, trees, also to help the wildlife that was once a part of the island. Therefore if the design is done before the mining then afterward we can do the reclamation of the land which would help the people to be able to function after the mining. It would also help the future generations that come along after the previous generations. Everyone must work together in the process in order for everyone to survive. If all this is done then the people of the island would not have to import their food. The reclamation process is the most important thing that has to be designed first whether it is land, soil, water, lakes, and clay then after plant trees, vegetation, and other forms of plants to help replenish the land after the mining is done.
I hope I helped :3
Answer : The correct option is, (b) +115 J/mol.K
Explanation :
Formula used :

where,
= change in entropy
= change in enthalpy of vaporization = 40.5 kJ/mol
= boiling point temperature = 352 K
Now put all the given values in the above formula, we get:



Therefore, the standard entropy of vaporization of ethanol at its boiling point is +115 J/mol.K
At the first reaction when 2HBr(g) ⇄ H2(g) + Br2(g)
So Kc = [H2] [Br2] / [HBr]^2
7.04X10^-2 = [H2][Br] / [HBr]^2
at the second reaction when 1/2 H2(g) + 1/2 Br2 (g) ⇄ HBr
Its Kc value will = [HBr] / [H2]^1/2*[Br2]^1/2
we will make the first formula of Kc upside down:
1/7.04X10^-2 = [HBr]^2/[H2][Br2]
and by taking the square root:
∴ √(1/7.04X10^-2)= [HBr] / [H2]^1/2*[Br]^1/2
∴ Kc for the second reaction = √(1/7.04X10^-2) = 3.769
Actually, we can answer the problem even without the first statement. All we have to do is write the reaction for the production of sulfur trioxide.
2 S + 3 O₂ → 2 SO₃
The stoichiometric calculations is as follows:
6 g S * 1 mol/32.06 g S = 0.187 mol S
Moles O₂ needed = 0.187 mol S * 3 mol O₂/2 mol S = 0.2805 mol O₂
Since the molar mas of O₂ is 32 g/mol,
Mass of O₂ needed = 0.2805 mol O₂ * 32 g/mol = 8.976 g O₂