Answer:
red supergiants is the answer
We can calculate for temperature by assuming the equation
for ideal gas law:
P V = n R T
Where,
P = pressure = 1.80 atm
V = volume = 18.2 L
n = number of moles = 1.20 moles
R = gas constant = 0.08205746 L atm / mol K
Substituting to the given equation:
T = P V / n R
T = (1.8 atm * 18.2 L) / (1.2 moles * 0.08205746 L atm /
mol K)
T = 332.70 K
We can convert K unit to ˚C unit by subtracting 273.15
to Kelvin, therefore
T = 59.55 ˚<span>C</span>
Answer:
Atom is a the smallest particle of a chemical element that can exist.
Molecules is a a group of atoms bonded together, representing the smallest fundamental unit of a chemical compound that can take part in a chemical reaction.
Particles is a minute portion of matter.
A particle can be a single atom or a molecule ( a group of atoms held together by chemical bonds).
Answer:
The full amount (5.00 g) will be dissolved in 1 L of water at 25°C.
Explanation:
The molecular weight (MW) of Vanillin (C₈H₈O₃) is calculated from the chemical formula as follows:
MW(C₈H₈O₃) = (12 g/mol x 8) + (1 g/mol x 8) + (16 g/mol x 3) = 152 g/mol
If 0.070 mol of C₈H₈O₃ are soluble per liter of water at 25°C, the maximum mass that can be dissolved in 1 L is:
0.070 mol x 152 g/mol = 10.64 g
Since 5.00 g is lesser than the maximum amount that can be dissolved (10.64 g), the added amount will be completely dissolved in 1 L of water at 25°C.
In order to emit electrons, the cesium will have to absorb photons. Each photon will knock out one electron by transferring its energy to the electron. Therefore, by the principle of energy conservation, the energy of the removed electron will be equal to the energy of the incident photon. That energy is calculated using Planck's equation:
E = hf
E = 6.63 x 10⁻³⁴ * 1 x 10¹⁵
E = 6.63 x 10⁻¹⁹ Joules
The electron will have 6.63 x 10⁻¹⁹ Joules of kinetic energy