Answer:
E. Q < K and reaction shifts right
Explanation:
Step 1: Write the balanced equation
A(s) + 3 B(l) ⇄ 2(aq) + D(aq)
Step 2: Calculate the reaction quotient (Q)
The reaction quotient, as the equilibrium constant (K), only includes aqueous and gaseous species.
Q = [C]² × [D]
Q = 0.64² × 0.38
Q = 0.15
Step 3: Compare Q with K and determine in which direction will shift the reaction
Since Q < K, the reaction will shift to the right to attain the equilibrium.
Answer:
Because both CaCl2 and CaBr2 both contain elements (Chlorine and Bromine) from the same group (group 7)
Explanation:
Elements are placed into different groups in the periodic table. Elements in the same group are those that have the same number of valence electrons in their outermost shell and as a result will behave similar chemically i.e. will react with other elements in the same manner.
Chlorine and Bromine are two elements belonging to group 7 of the periodic table. They are called HALOGENS and they have seven valence electrons in their outermost shell. Hence, when they form a compound with Calcium, a group two element, these compounds (CaCl2 and CaBr2) will possess similar properties because they have elements that are from the same group (halogen group).
Answer:The earths plates shifting
Explanation: The movement releases stored-up 'elastic strain' energy in the form of seismic waves, which propagate through the Earth and cause the ground surface to shake.
Answer: 1.59atm
Explanation:
We have that for the Question "Calculate the final pressure of the gas mixture, assuming that the container volume does not change."
it can be said that
The final pressure of the gas mixture, assuming that the container volume does not change =
From the question we are told
A container of N2O3(g) has a pressure of 0.265 atm. When the absolute temperature of the N2O3(g) is tripled, the gas completely decomposes, producing NO2(g) and NO(g).
Answer:
slippery, high pH, and caustic (last option)
Explanation:
when we say base we should think soap. soap is slippery. Bases give OH- ion. when OH- is combined with H+ ion it will create water which raises the pH. Since base can dissolve fats, ex: using dish liquid to cut grease on pots and pans etc.. they are caustic. Biologically they can disrupt the cell memebrane making it caustic to cell tissue.