Answer:
955.36 seconds ≈ 16 minutes
Explanation:
Power(P) is the rate of doing work(W)
That is, P = W/t, where t is the time.
multipying both sides with 't' and dividing with 'P', we get: t=W/P
Here, W = 5.35 x 10^10 J and P = 5.6 x 10^7 W ( 1 W = 1 J/s).
Therefore , on dividing W with P, we get 955.36 seconds.
Answer:
17.5 m/s²
1.90476 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
Force

Initial acceleration of the rocket is 17.5 m/s²

Time taken by the rocket to reach 120 km/h is 1.90476 seconds
Change in the velocity of a rocket is given by the Tsiolkovsky rocket equation

where,
= Initial mass of rocket with fuel
= Final mass of rocket without fuel
= Exhaust gas velocity
Hence, the change in velocity increases as the mass decreases which changes the acceleration
Answer:
<em>a) 3.56 x 10^22 N</em>
<em>b) 3.56 x 10^22 N</em>
<em></em>
Explanation:
Mass of the sun M = 2 x 10^30 kg
mass of the Earth m = 6 x 10^24 kg
Distance between the sun and the Earth R = 1.5 x 10^11 m
From Newton's law,
F = 
where F is the gravitational force between the sun and the Earth
G is the gravitational constant = 6.67 × 10^-11 m^3 kg^-1 s^-2
m is the mass of the Earth
M is the mass of the sun
R is the distance between the sun and the Earth.
Substituting values, we have
F =
= <em>3.56 x 10^22 N</em>
<em></em>
A) The force exerted by the sun on the Earth is equal to the force exerted by the Earth on the Sun also, and the force is equal to <em>3.56 x 10^22 N</em>
b) The force exerted by the Earth on the Sun = <em>3.56 x 10^22 N</em>