The amount of sample that is left after a certain period of time, given the half-life, h, can be calculated through the equation.
A(t) = A(o) (1/2)^(t/d)
where t is the certain period of time. Substituting the known values,
A(t) = (20 mg)(1/2)^(85.80/14.30)
Solving,
A(t) = 0.3125 mg
Hence, the answer is 0.3125 mg.
Answer: Every chemical equation adheres to the law of conservation of mass, which states that matter cannot be created or destroyed. ...
Use coefficients of products and reactants to balance the number of atoms of an element on both sides of a chemical equation.
<span>By definition, the first ionization energy is the energy required to remove the most loosely held electron from one mole of gaseous atoms to produce 1 mole of gaseous ions each with a charge of 1+. </span><span />